View More View Less
  • 1 St. Petersburg State University Dept. of Mathematics and Mechanics St. Petersburg Russia
Open access

We obtain new lower and upper bounds for probabilities of unions of events. These bounds are sharp. They are stronger than earlier ones. General bounds may be applied in arbitrary measurable spaces. We have improved the method that has been introduced in previous papers. We derive new generalizations of the first and second parts of the Borel-Cantelli lemma.

  • Anděl, J. and Dupaš, V., An extension of the Borel lemma, Comment. Math. Univ. Carolin., 30 (1989), 403–404.

    Dupaš V. , 'An extension of the Borel lemma ' (1989 ) 30 Comment. Math. Univ. Carolin. : 403 -404.

    • Search Google Scholar
  • Boros, E. and Prékopa, A., Closed form two-sided bounds for probabilities that at least r and exactly r out of n events occurs, Math. Oper. Research., 14 (1989), 317–342.

    Prékopa A. , 'Closed form two-sided bounds for probabilities that at least r and exactly r out of n events occurs ' (1989 ) 14 Math. Oper. Research. : 317 -342.

    • Search Google Scholar
  • de Caen, D., A lower bound on the probability of a union, Discrete Math., 169 (1997), 217–220.

    Caen D. , 'A lower bound on the probability of a union ' (1997 ) 169 Discrete Math. : 217 -220.

    • Search Google Scholar
  • Chandra, T. K., The Borel-Cantelli lemma, Springer, Heidelberg, 2012.

    Chandra T. K. , '', in The Borel-Cantelli lemma , (2012 ) -.

  • Chung, K. L. and Erdős, P., On the application of the Borel-Cantelli lemma, Trans. Amer. Math. Soc., 72 (1952), 179–186.

    Erdős P. , 'On the application of the Borel-Cantelli lemma ' (1952 ) 72 Trans. Amer. Math. Soc. : 179 -186.

    • Search Google Scholar
  • Dawson, D. A. and Sankoff, D., An inequality for probabilities, Proc. Amer. Math. Soc., 18 (1967), 504–507.

    Sankoff D. , 'An inequality for probabilities ' (1967 ) 18 Proc. Amer. Math. Soc. : 504 -507.

  • Erdős, P. and Rényi, A., On Cantor’s series with convergent Σ1/q, Ann. Univ. Sci. Budapest Sect. Math., 2 (1959), 93–109.

    Rényi A. , 'On Cantor’s series with convergent Σ1/q ' (1959 ) 2 Ann. Univ. Sci. Budapest Sect. Math. : 93 -109.

    • Search Google Scholar
  • Feng, C., Li, L. and Shen, J., On the Borel-Cantelli lemma and its generalization, Comptes Rendus Math., 347 (2009), 1313–1316.

    Shen J. , 'On the Borel-Cantelli lemma and its generalization ' (2009 ) 347 Comptes Rendus Math. : 1313 -1316.

    • Search Google Scholar
  • Frolov, A. N., Bounds for probabilities of unions of events and the Borel-Cantelli lemma, Statist. Probab. Lett., 82 (2012), 2189–2197.

    Frolov A. N. , 'Bounds for probabilities of unions of events and the Borel-Cantelli lemma ' (2012 ) 82 Statist. Probab. Lett. : 2189 -2197.

    • Search Google Scholar
  • Frolov, A. N., On inequalities for probabilities of unions of events and the Borel-Cantelli lemma, Vestnik Sankt-Peterburgskogo Universiteta, Seriya 1. Matematika, Mekhanika, Astronomiya, N 2 (2014), 201–210 (in Russian). English translation: Vestnik St. Petersburg University, Mathematics, 47, N 2 (2014), 68–75. Allerton Press, Inc.

    Frolov A. N. , 'On inequalities for probabilities of unions of events and the Borel-Cantelli lemma ' (2014 ) 2 Vestnik Sankt-Peterburgskogo Universiteta, Seriya 1. Matematika, Mekhanika, Astronomiya : 201 -210.

    • Search Google Scholar
  • Galambos, J. and Simonelli, I., Bonferroni-type inequalities with applications, Springer-Verlag N.Y., 1996.

    Simonelli I. , '', in Bonferroni-type inequalities with applications , (1996 ) -.

  • Gallot, S., A bound for the maximum of a number of random variables, J. Appl. Probab., 3 (1966), 556–558.

    Gallot S. , 'A bound for the maximum of a number of random variables ' (1966 ) 3 J. Appl. Probab. : 556 -558.

    • Search Google Scholar
  • Kochen, S. and Stone, C., A note on the Borel-Cantelli lemma, Illinois J. Math., 8 (1964), 248–251.

    Stone C. , 'A note on the Borel-Cantelli lemma ' (1964 ) 8 Illinois J. Math. : 248 -251.

  • Kounias, E. G., Bounds for the probability of a union, with applications, Ann. Math. Statist., 39 (1968), 2154–2158.

    Kounias E. G. , 'Bounds for the probability of a union, with applications ' (1968 ) 39 Ann. Math. Statist. : 2154 -2158.

    • Search Google Scholar
  • Kwerel, S. M., Bounds on the probability of the union and intersection of m events, Adv. Appl. Probab., 7 (1975), 431–448.

    Kwerel S. M. , 'Bounds on the probability of the union and intersection of m events ' (1975 ) 7 Adv. Appl. Probab. : 431 -448.

    • Search Google Scholar
  • Kuai, H., Alajaji, F. and Takahara, G., A lower bound on the probability of a finite union of events, Discrete Math., 215 (2000), 147–158.

    Takahara G. , 'A lower bound on the probability of a finite union of events ' (2000 ) 215 Discrete Math. : 147 -158.

    • Search Google Scholar
  • Móri, T. F. and Székely, G. J., On the Erdős-Rényi generalization of the Borel-Cantelli lemma, Studia Sci. Math. Hungar., 18 (1983), 173–182.

    Székely G. J. , 'On the Erdős-Rényi generalization of the Borel-Cantelli lemma ' (1983 ) 18 Studia Sci. Math. Hungar. : 173 -182.

    • Search Google Scholar
  • Martikainen, A. I. and Petrov, V. V., On the Borel-Cantelli lemma, Zapiski Nauch. Semin. LOMI, 184 (1990), 200–207 (in Russian). English translation in: J. Math. Sci., 68 (1994), 540–544.

    Petrov V. V. , 'On the Borel-Cantelli lemma ' (1990 ) 184 Zapiski Nauch. Semin. LOMI : 200 -207.

    • Search Google Scholar
  • Petrov, V. V., A note on the Borel-Cantelli lemma, Statist. Probab. Lett., 58 (2002), 283–286.

    Petrov V. V. , 'A note on the Borel-Cantelli lemma ' (2002 ) 58 Statist. Probab. Lett. : 283 -286.

    • Search Google Scholar
  • Prékopa, A., Inequalities for discrete higher order convex functions, J. Math. Inequalities, 4 (2009), 485–498.

    Prékopa A. , 'Inequalities for discrete higher order convex functions ' (2009 ) 4 J. Math. Inequalities : 485 -498.

    • Search Google Scholar
  • Spitzer, F., Principles of random walk, Van Nostrand, Princeton, 1964.

    Spitzer F. , '', in Principles of random walk , (1964 ) -.

  • Xie, Y. Q., A bilateral inequality on the Borel-Cantelli lemma, Statist. Probab. Lett., 78 (2008), 2052–2057.

    Xie Y. Q. , 'A bilateral inequality on the Borel-Cantelli lemma ' (2008 ) 78 Statist. Probab. Lett. : 2052 -2057.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
sumbission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)