View More View Less
  • 1 Nanjing Normal University Institute of Mathematics, School of Mathematical Science Nanjing 210023 P.R. China
Open access

A space X is almost star countable (weakly star countable) if for each open cover U of X there exists a countable subset F of X such that \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\bigcup {_{x \in F}\overline {St\left( {x,U} \right)} } = X$ \end{document} (respectively, \documentclass{aastex} \usepackage{amsbsy} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{bm} \usepackage{mathrsfs} \usepackage{pifont} \usepackage{stmaryrd} \usepackage{textcomp} \usepackage{upgreek} \usepackage{portland,xspace} \usepackage{amsmath,amsxtra} \usepackage{bbm} \pagestyle{empty} \DeclareMathSizes{10}{9}{7}{6} \begin{document} $\overline {\bigcup {_{x \in F}} St\left( {x,U} \right)} = X$ \end{document}. In this paper, we investigate the relationships among star countable spaces, almost star countable spaces and weakly star countable spaces, and also study topological properties of almost star countable spaces.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aiken, L. P., Star-covering properties: generalized Ψ-spaces, countability conditions, reflection, Topology Appl., 158 (2011), 1732–1737.

    Aiken L. P. , 'Star-covering properties: generalized Ψ-spaces, countability conditions, reflection ' (2011 ) 158 Topology Appl. : 1732 -1737.

    • Search Google Scholar
  • Alas, O. T., Junqueira, L. R. and Wilson, R. G., Countability and star covering properties, Topology Appl., 158 (2011), 620–626.

    Wilson R. G. , 'Countability and star covering properties ' (2011 ) 158 Topology Appl. : 620 -626.

    • Search Google Scholar
  • Alas, O. T., Junqueira, L. R., van Mill, J., Tkachuk, V. V. and Wilson, R. G., On the extent of star countable spaces, Cent. Eur. J. Math., 9(3) (2011), 603–615.

    Wilson R. G. , 'On the extent of star countable spaces ' (2011 ) 9 Cent. Eur. J. Math. : 603 -615.

    • Search Google Scholar
  • van Douwn, E. K., Reed, G. M., Roscoe, A. W. and Tree, I. J., Star covering properties, Topology Appl., 39 (1991), 71–103.

    Tree I. J. , 'Star covering properties ' (1991 ) 39 Topology Appl. : 71 -103.

  • Engelking, R., General Topology, Revised and completed edition, Heldermann Verlag, Berlin (1989).

    Engelking R. , '', in General Topology, Revised and completed edition , (1989 ) -.

  • Matveev, M. V., A survey on star-covering properties, Topology Atlas, preprint No 330, (1998).

    Matveev M. V. , '', in A survey on star-covering properties , (1998 ) -.

  • van Mill, J., Tkachuk, V. V. and Wilson, R. G., Classes defined by stars and neighborhood assignments, Topology Appl., 154 (2007), 2127–2134.

    Wilson R. G. , 'Classes defined by stars and neighborhood assignments ' (2007 ) 154 Topology Appl. : 2127 -2134.

    • Search Google Scholar
  • Song, Y.-K., Remarks on countability and star covering properties, Topology Appl., 158 (2011), 1121–1123.

    Song Y.-K. , 'Remarks on countability and star covering properties ' (2011 ) 158 Topology Appl. : 1121 -1123.

    • Search Google Scholar
  • Tall, F. D., Normality verse Collectionwise Normality, in: Handbook of Settheoretic Topology, (K. Kunen and J. E. Vaughan, eds.), North-Holland, Amsterdam (1984), 685–732.

    Tall F. D. , '', in Handbook of Settheoretic Topology , (1984 ) -.

  • Walker, R. C., The Stone-Čech Compactification, Springer, Berlin (1974).

    Walker R. C. , '', in The Stone-Čech Compactification , (1974 ) -.