View More View Less
  • 1 Eötvös University Department of Operations Research Pázmány Péter sétány 1/c Budapest H-1117 Hungary
  • | 2 Rutgers Center for Operations Research RUTCOR 640 Bartholomew Rd. Piscataway NJ 08854 USA
Open access

Let A1,...,AN and B1,...,BM be two sequences of events and let νN(A) and νM(B) be the number of those Ai and Bj, respectively, that occur. Based on multivariate Lagrange interpolation, we give a method that yields linear bounds in terms of Sk,t, k+tm on the distribution of the vector (νN(A), νM(B)). For the same value of m, several inequalities can be generated and all of them are best bounds for some values of Sk,t. Known bivariate Bonferroni-type inequalities are reconstructed and new inequalities are generated, too.

  • Biermann, O., Über näherungsweise Kubaturen, Monatshefte Math. Phys., 14 (1903), 211–225.

    Biermann O. , 'Über näherungsweise Kubaturen ' (1903 ) 14 Monatshefte Math. Phys. : 211 -225.

    • Search Google Scholar
  • Boros, E. and Prékopa, A., Closed Form Two-Sided Bounds for Probabilities That Exactly r and at Least r out of n Events Occur, Mathematics of Operations Research, 14 (1989), 317–342.

    Prékopa A. , 'Closed Form Two-Sided Bounds for Probabilities That Exactly r and at Least r out of n Events Occur ' (1989 ) 14 Mathematics of Operations Research : 317 -342.

    • Search Google Scholar
  • Boros, E., Scozzari, A., Tardella, F. and Veneziani, P., Polynomially Computable Bounds for the Probability of the Union of Events, Mathematics of Operations Research (2014). http://dx.doi.org/10.1287/moor.2014.0657

    Veneziani P. , '', in Mathematics of Operations Research , (2014 ) -.

  • Bukszár, J., Hypermultitrees and sharp Bonferroni inequalities, Math. Inequal. Appl., 6(4) (2003), 727–743.

    Bukszár J. , 'Hypermultitrees and sharp Bonferroni inequalities ' (2003 ) 6 Math. Inequal. Appl. : 727 -743.

    • Search Google Scholar
  • Bukszár, J., Mádi-Nagy, G. and Szántai, T., Computing bounds for the probability of the union of events by different methods, Annals of Operations Research, 201(1) (2012), 63–81.

    Szántai T. , 'Computing bounds for the probability of the union of events by different methods ' (2012 ) 201 Annals of Operations Research : 63 -81.

    • Search Google Scholar
  • Bukszár, J. and Szántai, T., Probability bounds given by hypercherry trees, Optimization Methods and Software, 17 (2002), 409–422.

    Szántai T. , 'Probability bounds given by hypercherry trees ' (2002 ) 17 Optimization Methods and Software : 409 -422.

    • Search Google Scholar
  • Chen, J., Multivariate Bonferroni-Type Inequalities: Theory and Applications, CRC Press (2014).

    Chen J. , '', in Multivariate Bonferroni-Type Inequalities: Theory and Applications , (2014 ) -.

  • Chen, T. and Seneta, E., Multivariate Bonferroni-Type Lower Bounds, J. Appl. Probab., 33(3) (1996), 729–740.

    Seneta E. , 'Multivariate Bonferroni-Type Lower Bounds ' (1996 ) 33 J. Appl. Probab. : 729 -740.

    • Search Google Scholar
  • Chen, T. and Seneta, E., A Refinement of Multivariate Bonferroni-Type Inequalities, J. Appl. Probab., 37(1) (2000), 276–282.

    Seneta E. , 'A Refinement of Multivariate Bonferroni-Type Inequalities ' (2000 ) 37 J. Appl. Probab. : 276 -282.

    • Search Google Scholar
  • Dohmen, K. and Tittmann, P., Bonferroni-type inequalities and binomially bounded functions, Discrete Math., 310(6–7) (2007), 1265–1268.

    Tittmann P. , 'Bonferroni-type inequalities and binomially bounded functions ' (2007 ) 310 Discrete Math. : 1265 -1268.

    • Search Google Scholar
  • Galambos, J. and Simonelli, I., Bonferroni-Type Inequalities with Applications, Springer-Verlag, Berlin/New York (1996).

    Simonelli I. , '', in Bonferroni-Type Inequalities with Applications , (1996 ) -.

  • Galambos, J. and Xu, Y., Some Optimal Bivariate Bonferroni-Type Bounds Proc. of the American Mathematical Society, 117(2) (1993), 523–528.

    Xu Y. , 'Some Optimal Bivariate Bonferroni-Type Bounds ' (1993 ) 117 Proc. of the American Mathematical Society : 523 -528.

    • Search Google Scholar
  • Galambos, J. and Xu, Y.,. Bivariate Extension of the Method of Polynomials for Bonferroni-type Inequalities, J. Multivariate Analysis, 52 (1995), 131–139.

    Xu Y. , 'Bivariate Extension of the Method of Polynomials for Bonferroni-type Inequalities ' (1995 ) 52 J. Multivariate Analysis : 131 -139.

    • Search Google Scholar
  • Habib, A. and Szántai, T., New bounds on the reliability of the consecutive k-out-of-r-from-n: F system, Reliability Engineering and System Safety, 68 (2000), 97–106.

    Szántai T. , 'New bounds on the reliability of the consecutive k-out-of-r-from-n: F system ' (2000 ) 68 Reliability Engineering and System Safety : 97 -106.

    • Search Google Scholar
  • Lee, M.-Y., Improved bivariate Bonferroni-type inequalities, Statistics and Probability Letters, 31 (1997), 359–364.

    Lee M.-Y. , 'Improved bivariate Bonferroni-type inequalities ' (1997 ) 31 Statistics and Probability Letters : 359 -364.

    • Search Google Scholar
  • Mádi-Nagy, G., On multivariate discrete moment problems: generalization of the bivariate min algorithm for higher dimensions, SIAM Journal on Optimization, 19(4) (2009), 1781–1806.

    Mádi-Nagy G. , 'On multivariate discrete moment problems: generalization of the bivariate min algorithm for higher dimensions ' (2009 ) 19 SIAM Journal on Optimization : 1781 -1806.

    • Search Google Scholar
  • Mádi-Nagy, G. and Prékopa, A., On Multivariate Discrete Moment Problems and Their Applications to Bounding Expectations and Probabilities, Mathematics of Operations Research, 29(2) (2004), 229–258.

    Prékopa A. , 'On Multivariate Discrete Moment Problems and Their Applications to Bounding Expectations and Probabilities ' (2004 ) 29 Mathematics of Operations Research : 229 -258.

    • Search Google Scholar
  • Prékopa, A., Boole-Bonferroni Inequalities and Linear Programming, Operations Research, 36(1) (1988), 145–162.

    Prékopa A. , 'Boole-Bonferroni Inequalities and Linear Programming ' (1988 ) 36 Operations Research : 145 -162.

    • Search Google Scholar
  • Prékopa, A., Sharp bounds on probabilities using linear programming, Operations Research, 38 (1990a), 227–239.

    Prékopa A. , 'Sharp bounds on probabilities using linear programming ' (1990 ) 38 Operations Research : 227 -239.

    • Search Google Scholar
  • Prékopa, A., The discrete moment problem and linear programming, Discrete Applied Mathematics, 27 (1990b), 235–254.

    Prékopa A. , 'The discrete moment problem and linear programming ' (1990 ) 27 Discrete Applied Mathematics : 235 -254.

    • Search Google Scholar
  • Prékopa, A., Inequalities on Expectations Based on the Knowledge of Multivariate Moments. M. Shaked and Y. L. Tong, eds., Stochastic Inequalities, Institute of Mathematical Statistics, Lecture Notes — Monograph Series, Vol 22 (1992), 309–331.

    Prékopa A. , '', in Stochastic Inequalities , (1992 ) -.

  • Prékopa, A., Stochastic Programming, Kluwer Academic Publishers, Dordrecht, Boston (1995).

    Prékopa A. , '', in Stochastic Programming , (1995 ) -.

  • Prékopa, A., Bounds on Probabilities and Expectations Using Multivariate Moments of Discrete Distributions, Studia Scientiarum Mathematicarum Hungarica, 34 (1998), 349–378.

    Prékopa A. , 'Bounds on Probabilities and Expectations Using Multivariate Moments of Discrete Distributions ' (1998 ) 34 Studia Scientiarum Mathematicarum Hungarica : 349 -378.

    • Search Google Scholar
  • Prékopa, A., On Multivariate Discrete Higher Order Convex Functions and their Applications. RUTCOR Research Report 39-2000 (2000). Also in: Proceedings of the Sixth International Conference on Generalized Convexity and Monotonicity, Karlovasi, Samos, Greece, August 29 - September 2, to appear.

  • Simonelli, I., An Extension of the Bivariate Method of Polynomials and a Reduction Formula for Bonferroni-Type Inequalities, J. Multivariate Analysis, 69 (1999), 1–9.

    Simonelli I. , 'An Extension of the Bivariate Method of Polynomials and a Reduction Formula for Bonferroni-Type Inequalities ' (1999 ) 69 J. Multivariate Analysis : 1 -9.

    • Search Google Scholar
  • Veneziani, P., Upper bounds of degree 3 for the probability of the union of events via linear programming, Discrete Applied Mathematics, 157(4) (2009), 858–863.

    Veneziani P. , 'Upper bounds of degree 3 for the probability of the union of events via linear programming ' (2009 ) 157 Discrete Applied Mathematics : 858 -863.

    • Search Google Scholar
  • Vizvári, B., New upper bounds on the probability of events based on graph structures, Math. Inequal. Appl., 10(1) (2007), 217–228.

    Vizvári B. , 'New upper bounds on the probability of events based on graph structures ' (2007 ) 10 Math. Inequal. Appl. : 217 -228.

    • Search Google Scholar

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH
2020  
Total Cites 536
WoS
Journal
Impact Factor
0,855
Rank by Mathematics 189/330 (Q3)
Impact Factor  
Impact Factor 0,826
without
Journal Self Cites
5 Year 1,703
Impact Factor
Journal  0,68
Citation Indicator  
Rank by Journal  Mathematics 230/470 (Q2)
Citation Indicator   
Citable 32
Items
Total 32
Articles
Total 0
Reviews
Scimago 24
H-index
Scimago 0,307
Journal Rank
Scimago Mathematics (miscellaneous) Q3
Quartile Score  
Scopus 139/130=1,1
Scite Score  
Scopus General Mathematics 204/378 (Q3)
Scite Score Rank  
Scopus 1,069
SNIP  
Days from  85
submission  
to acceptance  
Days from  123
acceptance  
to publication  
Acceptance 16%
Rate

2019  
Total Cites
WoS
463
Impact Factor 0,468
Impact Factor
without
Journal Self Cites
0,468
5 Year
Impact Factor
0,413
Immediacy
Index
0,135
Citable
Items
37
Total
Articles
37
Total
Reviews
0
Cited
Half-Life
21,4
Citing
Half-Life
15,5
Eigenfactor
Score
0,00039
Article Influence
Score
0,196
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,04841
Average
IF
Percentile
13,117
Scimago
H-index
23
Scimago
Journal Rank
0,234
Scopus
Scite Score
76/104=0,7
Scopus
Scite Score Rank
General Mathematics 247/368 (Q3)
Scopus
SNIP
0,671
Acceptance
Rate
14%

 

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 672 EUR / 840 USD
Print + online subscription: 760 EUR / 948 USD
Subscription fee 2022

Online subsscription: 688 EUR / 860 USD
Print + online subscription: 776 EUR / 970 USD

Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 58
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)