View More View Less
  • 1 GC University Department of Mathematics Kotwali Road, Jinnah Town Faisalabad, Punjab 38000 Faisalabad Pakistan
  • 2 University of Kaiserslautern Department of Mathematics Erwin-Schrödinger-Str. 67663 Kaiserslautern Germany
  • 3 Jazan University Department of Mathematics P.O. Box 114 Jazan Saudia Arabia
Open access

We present an algorithm to compute the primary decomposition of a submodule N of the free module ℤ[x 1,...,x n]m. For this purpose we use algorithms for primary decomposition of ideals in the polynomial ring over the integers. The idea is to compute first the minimal associated primes of N, i.e. the minimal associated primes of the ideal Ann (ℤ[x 1,...,x n]m/N) in ℤ[x 1,...,x n] and then compute the primary components using pseudo-primary decomposition and extraction, following the ideas of Shimoyama-Yokoyama. The algorithms are implemented in Singular.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Adams, W. W. and Loustaunau, P., An Introduction to Gröbner bases, Graduate studies in mathematics, vol. 3, American Mathematical Scociety, 2003.

    Loustaunau P. , '', in Graduate studies in mathematics , (2003 ) -.

  • Ayoub, C. W., The Decomposition Theorem for Ideals in Polynomial Rings over a Domain, Journal of Algebra, 76 (1982), 99–110.

    Ayoub C. W. , 'The Decomposition Theorem for Ideals in Polynomial Rings over a Domain ' (1982 ) 76 Journal of Algebra : 99 -110.

    • Search Google Scholar
  • Decker, W., Greuel, G.-M. and Pfister, G., Primary Decomposition: Algorithms and Comparisons, in: Algorithmic Algebra and Number Theory, Springer, 187–220 (1998).

    Pfister G. , '', in Algorithmic Algebra and Number Theory , (1998 ) -.

  • Decker, W., Greuel, G.-M., Pfister, G. and Schönemann, H., Singular 3-1-6 — A computer algebra system for polynomial computations, http://www.singular.uni-kl.de (2013)

    Schönemann H. , '', in Singular 3-1-6 — A computer algebra system for polynomial computations , (2013 ) -.

    • Search Google Scholar
  • Eisenbud, D., Huneke, C. and Vasconcelos, W., Direct Methods for Primary Decomposition, Inventiones Mathematicae, 110 (1992), 207–235.

    Vasconcelos W. , 'Direct Methods for Primary Decomposition ' (1992 ) 110 Inventiones Mathematicae : 207 -235.

    • Search Google Scholar
  • Greuel, G.-M. and Pfister, G., A Singular Introduction to Commutative Algebra, Second edition, Springer (2007).

    Pfister G. , '', in ASingularIntroduction to Commutative Algebra , (2007 ) -.

  • Gianni, P., Trager, B. and Zacharias, G., Gröbner Bases and Primary Decomposition of Polynomial Ideals, Journal of Symbolic Computation, 6 (1988), 149–167.

    Zacharias G. , 'Gröbner Bases and Primary Decomposition of Polynomial Ideals ' (1988 ) 6 Journal of Symbolic Computation : 149 -167.

    • Search Google Scholar
  • Idrees, N., Algorithms for primary decoposition of modules, Studia Scientiarum Mathematicarum Hungarica, 48 (2) (2011), 227–246.

    Idrees N. , 'Algorithms for primary decoposition of modules ' (2011 ) 48 Studia Scientiarum Mathematicarum Hungarica : 227 -246.

    • Search Google Scholar
  • Pfister, G.m Sadiq, A. and Steidel, S., An Algorithm for Primary Decomposition in Polynomial Rings over the Integers, Central European Journal of Mathematics, Vol. 9, No. 4 (2010), 897–904.

    Steidel S. , 'An Algorithm for Primary Decomposition in Polynomial Rings over the Integers ' (2010 ) 9 Central European Journal of Mathematics : 897 -904.

    • Search Google Scholar
  • Rutman, E. W., Gröbner bases and primary decomposition of modules, J. Symbolic Computation, 14 (1992), 483–503.

    Rutman E. W. , 'Gröbner bases and primary decomposition of modules ' (1992 ) 14 J. Symbolic Computation : 483 -503.

    • Search Google Scholar
  • Sadiq, A., Standard bases over Rings, International Journal of Algebra and Computation, Vol. 20, No. 7 (2010), 953–968.

    Sadiq A. , 'Standard bases over Rings ' (2010 ) 20 International Journal of Algebra and Computation : 953 -968.

    • Search Google Scholar
  • Seidenberg, A., Constructions in a Polynomial Ring over the Ring of Integers, American Journal of Mathematics, 100 (No. 4) (1978), 685–703.

    Seidenberg A. , 'Constructions in a Polynomial Ring over the Ring of Integers ' (1978 ) 100 American Journal of Mathematics : 685 -703.

    • Search Google Scholar
  • Shimoyama, T. and Yokoyama, K., Localization and Primary Decomposition of Polynomial Ideals, Journal of Symbolic Computation, 22 (1996), 247–277.

    Yokoyama K. , 'Localization and Primary Decomposition of Polynomial Ideals ' (1996 ) 22 Journal of Symbolic Computation : 247 -277.

    • Search Google Scholar

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu