View More View Less
  • 1 CINVESTAV-IPN Departamento de Matemáticas Ciudad de México México
  • 2 Universitat Politècnica de Catalunya, BarcelonaTech Barcelona España
  • 3 Université de Nice Sophia-Antipolis Laboratoire J.A. Dieudonné Alpes France
Open access

Let S be a set of n points distributed uniformly and independently in a convex, bounded set in the plane. A four-gon is called empty if it contains no points of S in its interior. We show that the expected number of empty non-convex four-gons with vertices from S is 12n2logn + o(n2logn) and the expected number of empty convex four-gons with vertices from S is Θ(n2).

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M. A. Huemer, C., Urrutia, J. and Vogtenhuber, B., 4-holes in point sets, Comput. Geom., 47(6) (2014), 644–650.

    Vogtenhuber B. , '4-holes in point sets ' (2014 ) 47 Comput. Geom. : 644 -650.

  • Aichholzer, O., Fabila-Monroy, R., Hackl, T., Huemer, C., Pilz, A. and Vogtenhuber, B., Lower bounds for the number of small convex k-holes, Comput. Geom., 47(5) (2014), 605–613.

    Vogtenhuber B. , 'Lower bounds for the number of small convex k-holes ' (2014 ) 47 Comput. Geom. : 605 -613.

    • Search Google Scholar
  • Aichholzer, O., Fabila-Monroy, R., González-Aguilar, H., Hackl, T., Heredia, M. A., Huemer, C., Urrutia, J., Valtr, P. and Vogtenhuber, B., On k-gons and k-holes in point sets, 23rd Annual Canadian Conference on Computational Geometry CCCG 2011, 21–26. Toronto, Canada, 2011.

    Vogtenhuber B. , '', in 23rd Annual Canadian Conference on Computational Geometry CCCG 2011 , (2011 ) -.

    • Search Google Scholar
  • Aichholzer, O., Hackl T. and Vogtenhuber, B., On 5-gons and 5-holes. XIV Encuentros de Geometría Computacional ECG2011, Lecture Notes in Comput. Sci., vol. 7579: 1–13. Springer, 2012.

    Vogtenhuber B. , 'On 5-gons and 5-holes ' (2012 ) 7579 XIV Encuentros de Geometría Computacional ECG2011, Lecture Notes in Comput. Sci. : 1 -13.

    • Search Google Scholar
  • Balogh, J., González-Aguilar, H. and Salazar, G., Large convex holes in random point sets, Comput. Geom., 46(6) (2013), 725–733.

    Salazar G. , 'Large convex holes in random point sets ' (2013 ) 46 Comput. Geom. : 725 -733.

  • Bárány, I., Sylvester’s question: the probability that n points are in convex position, The annals of probability, 27 (1999), 2020–2034.

    Bárány I. , 'Sylvester’s question: the probability that n points are in convex position ' (1999 ) 27 The annals of probability : 2020 -2034.

    • Search Google Scholar
  • Bárány, I. and Füredi, Z., Empty simplices in Euclidean space, Canad. Math. Bull., 30(4) (1987), 436–445.

    Füredi Z. , 'Empty simplices in Euclidean space ' (1987 ) 30 Canad. Math. Bull. : 436 -445.

  • Bárány, I., Marckert, J.-F. and Reitzner, M., Many empty triangles have a common edge, Discrete and Computational Geometry, 50(1) (2013), 244–252.

    Reitzner M. , 'Many empty triangles have a common edge ' (2013 ) 50 Discrete and Computational Geometry : 244 -252.

    • Search Google Scholar
  • Bárány, I. and Valtr, P., Planar point sets with a small number of empty convex polygons, Stud. Sci. Math. Hung., 41 (2004), 243–266.

    Valtr P. , 'Planar point sets with a small number of empty convex polygons ' (2004 ) 41 Stud. Sci. Math. Hung. : 243 -266.

    • Search Google Scholar
  • Blaschke, W., Vorlesungenüber Differentialgeometrie II. Affine Differentialge ometrie, Springer, Berlin, 1923.

    Blaschke W. , '', in Vorlesungenüber Differentialgeometrie II. Affine Differentialge ometrie , (1923 ) -.

    • Search Google Scholar
  • Dumitrescu, A., Planar sets with few empty convex polygons, Stud. Sci. Math. Hung., 36 (2000), 93–109.

    Dumitrescu A. , 'Planar sets with few empty convex polygons ' (2000 ) 36 Stud. Sci. Math. Hung. : 93 -109.

    • Search Google Scholar
  • García, A., A note on the number of empty triangles, XIV Encuentros de Geometría Computacional ECG2011, Lecture Notes in Comput. Sci., vol. 7579: 249–257. Springer, 2012.

    García A. , 'A note on the number of empty triangles ' (2012 ) 7579 XIV Encuentros de Geometría Computacional ECG2011, Lecture Notes in Comput. Sci. : 249 -257.

    • Search Google Scholar
  • Henze, N., Random triangles in convex regions, J. Appl. Prob., 20 (1983), 111–125.

    Henze N. , 'Random triangles in convex regions ' (1983 ) 20 J. Appl. Prob. : 111 -125.

  • Katchalski, M. and Meir, A., On empty triangles determined by points in the plane, Acta Math. Hung., 51 (1988), 323–328.

    Meir A. , 'On empty triangles determined by points in the plane ' (1988 ) 51 Acta Math. Hung. : 323 -328.

    • Search Google Scholar
  • Marckert, J.-F., Probability that n random points in a disk are in convex position, arXiv:1402.3512, 2014.

    Marckert J.-F. , '', in Probability that n random points in a disk are in convex position , (2014 ) -.

    • Search Google Scholar
  • Pfiefer, R. E., The Historical Development of J. J. Sylvester’s Four Point Problem, Math. Mag., 62 (1989), 309–317.

    Pfiefer R. E. , 'The Historical Development of J. J. Sylvester’s Four Point Problem ' (1989 ) 62 Math. Mag. : 309 -317.

    • Search Google Scholar
  • Valtr, P., On the minimum number of empty polygons in planar point sets, Stud. Sci. Math. Hung., 30 (1995), 155–163.

    Valtr P. , 'On the minimum number of empty polygons in planar point sets ' (1995 ) 30 Stud. Sci. Math. Hung. : 155 -163.

    • Search Google Scholar
  • Valtr, P., Probability that n random points are in convex position, Discrete and Computational Geometry, 13 (1995), 637–643.

    Valtr P. , 'Probability that n random points are in convex position ' (1995 ) 13 Discrete and Computational Geometry : 637 -643.

    • Search Google Scholar
  • Valtr, P., The probability that n random points in a triangle are in convex position, Combinatorica, 16 (1996), 567–573.

    Valtr P. , 'The probability that n random points in a triangle are in convex position ' (1996 ) 16 Combinatorica : 567 -573.

    • Search Google Scholar

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2019): 0.486
  • Scimago Journal Rank (2019): 0.234
  • SJR Hirsch-Index (2019): 23
  • SJR Quartile Score (2019): Q3 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.309
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21
  • SJR Quartile Score (2018): Q3 Mathematics (miscellaneous)

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu