View More View Less
  • 1 Peking University, Beijing, 100871, China
  • 2 Central China Normal University, Wuhan, 430079, China
  • 3 Youngstown State University, Youngstown, Ohio 44555-0002, USA
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

In this article, we give some reviews concerning negative probabilities model and quasi-infinitely divisible at the beginning. We next extend Feller’s characterization of discrete infinitely divisible distributions to signed discrete infinitely divisible distributions, which are discrete pseudo compound Poisson (DPCP) distributions with connections to the Lévy-Wiener theorem. This is a special case of an open problem which is proposed by Sato (2014), Chaumont and Yor (2012). An analogous result involving characteristic functions is shown for signed integer-valued infinitely divisible distributions. We show that many distributions are DPCP by the non-zero p.g.f. property, such as the mixed Poisson distribution and fractional Poisson process. DPCP has some bizarre properties, and one is that the parameter λ in the DPCP class cannot be arbitrarily small.

  • [1]

    Albeverio, S., Gottschalk, H., Wu, J. L., Partly divisible probability distributions, Forum Mathematicum, 10(6) (1998), 687698.

  • [2]

    Baez-Duarte, L., Central limit theorem for complex measures, Journal of Theoretical Probability, 6(1) (1993), 3356.

  • [3]

    Baishanski, B., Norms of powers and a central limit theorem for complex-valued probabilities, in: Analysis of Divergence (pp. 523543). Birkhäuser, Boston, 1998.

    • Search Google Scholar
    • Export Citation
  • [4]

    Beghin, L., Macci, C., Fractional discrete processes: compound and mixed Poisson representations, Journal of Applied Probability, 51 (2014), 1936.

    • Search Google Scholar
    • Export Citation
  • [5]

    Beurling, A., Sur les intégrales de Fourier absolument convergentes et leur applicationa une transformation fonctionnelle, in: Ninth Scandinavian Mathematical Congress (pp. 345366), 1938.

    • Search Google Scholar
    • Export Citation
  • [6]

    Beurling, A., Helson, H., Fourier-Stieltjes transforms with bounded powers, Mathematica Scandinavica, 1 (1953), 120126.

  • [7]

    Buchmann, B., GrÜbel, R., Decompounding: an estimation problem for Poisson random sums, The Annals of Statistics, 31(4) (2003), 10541074.

    • Search Google Scholar
    • Export Citation
  • [8]

    Bogachev, V. I., Measure theory (Vol. II.). Springer, Berlin, 2007.

  • [9]

    Chaumont, L., Yor, M., Exercises in Probability: a guided tour from measure theory to random processes, via conditioning, Second edition, Cambridge University Press, 2012.

    • Search Google Scholar
    • Export Citation
  • [10]

    Demni, N., Mouayn, Z., Analysis of generalized Poisson distributions associated with higher Landau levels, Infinite Dimensional Analysis, Quantum Probability and Related Topics, 18(04) (2015), 1550028.

    • Search Google Scholar
    • Export Citation
  • [11]

    Feller, W., An introduction to probability theory and its applications, Vol. I. 3ed., Wiley, New York.

  • [12]

    Feller, W., An introduction to probability theory and its applications, Vol. II. 2ed., Wiley, New York, 2071.

  • [13]

    Haight, F. A., Handbook of the Poisson distribution, Wiley, Los Angeles, 1967.

  • [14]

    Hürlimann, W., Pseudo compound Poisson distributions in risk theory, ASTIN Bulletin, 20(1) (1990), 5779.

  • [15]

    Itô, K., Stochastic processes: Lectures given at Aarhus University, Springer, Berlin, 2004.

  • [16]

    Jánossy, L., Rényi, A., Aczél, J., On composed Poisson distributions, I., Acta Mathematica Hungarica, 1(2) (1950), 209224.

  • [17]

    Johnson, N. L., Kemp, A. W., Kotz, S., Univariate Discrete Distributions, 3ed., Wiley, New Jersey, 2005.

  • [18]

    Jørgensen, B., The theory of dispersion models, Chapman & Hall, London, 1997.

  • [19]

    Karymov, D. N., On the decomposition of lattice distributions into convolutions of Poisson signed measures, Theory of Probability & Its Applications, 49(3) (2005), 545552.

    • Search Google Scholar
    • Export Citation
  • [20]

    Kemp, A. W., Convolutions involving binomial pseudo-variables, Sankhya: The Indian Journal of Statistics, Series A (1979), 232243.

  • [21]

    Kerns, G. J., Signed measures in exchangeability and infinite divisibility (Doctoral dissertation, Bowling Green State University), 2004.

    • Search Google Scholar
    • Export Citation
  • [22]

    Laskin, N., Fractional Poisson process, Communications in Nonlinear Science and Numerical Simulation, 8(3) (2003), 201213.

  • [23]

    Letac, G., Malouche, D., Maurer, S., The real powers of the convolution of a negative binomial distribution and a Bernoulli distribution, Proceedings of the American Mathematical Society, 130(7) (2002), 21072114.

    • Search Google Scholar
    • Export Citation
  • [24]

    Lévy, P., Sur la convergence absolue des séries de Fourier, Compositio Mathematica, 1 (1935), 114.

  • [25]

    Lévy, P., Théorie de l’addition des variables aléatoires, Gauthiers-Villars, Paris, 1937.

  • [26]

    Lévy, P., Sur les exponentielles de polynômes et sur l’arithmétique des produits de lois de Poisson, Annales scientifiques de l’École Normale Supérieure, 54 (1937), 231292.

    • Search Google Scholar
    • Export Citation
  • [27]

    Lindner, A., Pan, L., Sato, K., On quasi-infinitely divisible distributions, to appear in Trans. Amer. Math. Soc. https://arxiv.org/abs/1701.02400.

    • Search Google Scholar
    • Export Citation
  • [28]

    Maceda, E. C., On the compound and generalized Poisson distributions, The Annals of Mathematical Statistics, 19(3) (1948), 414416.

  • [29]

    Meerschaert, M. M., Scheffler, H. P., Limit distributions for sums of independent random vectors: Heavy tails in theory and practice, Wiley, New York, 2001.

    • Search Google Scholar
    • Export Citation
  • [30]

    Milne, R. K., Westcott, M., Generalized multivariate Hermite distributions and related point processes,. Annals of the Institute of Statistical Mathematics, 45(2) (1993), 367381.

    • Search Google Scholar
    • Export Citation
  • [31]

    Nakamura, T., A quasi-infinitely divisible characteristic function and its exponentiation, Statistics & Probability Letters, 83(10) (2013), 22562259.

    • Search Google Scholar
    • Export Citation
  • [32]

    Nakamura, T., A complete Riemann zeta distribution and the Riemann hypothesis, Bernoulli, 21(1) (2015), 604617.

  • [33]

    Nahla, B. S., Afif, M., The real powers of the convolution of a gamma distribution and a Bernoulli distribution, Journal of Theoretical Probability, 24(2) (2011), 450453.

    • Search Google Scholar
    • Export Citation
  • [34]

    Popov, A. Y., Sedletskii, A. M., Distribution of roots of Mittag-Leffler functions, Journal of Mathematical Sciences, 190(2) (2013), 209409.

    • Search Google Scholar
    • Export Citation
  • [35]

    Ruzsa, I. Z., Székely, G. J., Convolution quotients of nonnegative functions, Monatshefte fÜr Mathematik, 95(3) (1983), 235239.

  • [36]

    Sato, K., Lévy processes and infinitely divisible distributions, Revised edition, Cambridge University Press, Cambridge, 2013.

  • [37]

    Sato, K., Stochastic integrals with respect to Lévy processes and infinitely divisible distributions, Sugaku Expositions, 27 (2014), 1942.

    • Search Google Scholar
    • Export Citation
  • [38]

    Székely, G. J., Half of a coin: negative probabilities, Wilmott Magazine (2005), 6668.

  • [39]

    van Haagen, A. J., Finite signed measures on function spaces, Pacific Journal of Mathematics, 95(2) (1981), 467482.

  • [40]

    van Haagen, A. J., Classifying infinitely divisible distributions by functional equations, Amsterdam: Mathematisch (1978).

  • [41]

    Vellaisamy, P., Maheshwari, A., Fractional negative binomial and Polya processes. arXiv preprint arXiv:1306.2493, to appear in Probability and Mathematical Statistics.

  • [42]

    Zhang, H., Liu, Y., Li, B., Notes on discrete compound Poisson model with applications to risk theory, Insurance: Mathematics and Economics, 59 (2014), 325336.

    • Search Google Scholar
    • Export Citation
  • [43]

    Zhang, H., Li, B., Characterizations of discrete compound Poisson distributions, Communications in Statistics-Theory and Methods, 45(22) (2016), 67896802.

    • Search Google Scholar
    • Export Citation
  • [44]

    Zygmund, A., Trigonometric series, third edition, Vol I, II, Cambridge University Press, Cambridge, 2002.

  • [45]

    Zhang, H., Wu, X., Notes on discrete compound Poisson point process and its concentration inequalities, arXiv preprint arXiv:1709.04159.