View More View Less
  • 1 Graz University of Technology, Kopernikusgasse 24/II, A-8010 Graz, Austria
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

Let {P n}n≥0 be the sequence of Padovan numbers defined by P 0 = 0, P 1 = 1, P 2 = 1, and Pn +3 = Pn +1 + Pn for all n ≥ 0. In this paper, we find all integers c admitting at least two representations as a difference between a Padovan number and a power of 3.

  • [1]

    Baker, A. and Davenport, H., The equations 3x 2 − 2 = y 2 and 8x 2 − 7 = z 2, Q. J. Math.., 20(1) (1969), 129137,

  • [2]

    Baker, A. and Wüstholz, G., Logarithmic forms and Diophantine geometry, vol. 9. Cambridge University Press, 2008.

  • [3]

    Bugeaud, Y., Mignotte, M. and Siksek, S., Classical Classical and modular approaches to exponential Diophantine equations I. Fibonacci and Lucas perfect powers, Ann. of Math., 163(2) (2006), 9691018.

    • Search Google Scholar
    • Export Citation
  • [4]

    Bravo, J. J., Luca, F. and Yazán, K., On Pillai's problem with Tribonacci numbers and powers of 2, Bull. Korean Math. Soc. 54(3) (2017), 10691080,

    • Search Google Scholar
    • Export Citation
  • [5]

    Chim, K. C., Pink, I. and Ziegler, V., On a variant of Pillai's problem, Int. J. Number Theory, 13(7) (2017), 17111727,

  • [6]

    Chim, K. C., Pink, I. and Ziegler, V., On a variant of Pillai's problem II, J. Number Theory, 183 (2018), 269290.

  • [7]

    Ddamulira, M., On the problem of Pillai with Fibonacci numbers and powers of 3, Bol. Soc. Mat. Mex., To appear, 2019.

  • [8]

    Ddamulira, M., On the problem of Pillai with Tribonacci numbers and powers of 3, J. Integer Seq., 22(5) (2019), Art. 19.5.6.

  • [9]

    Ddamulira, M. and Luca, F., On a problem of Pillai with k-generalized Fibonacci numbers and powers of 3, Preprint, 2019.

  • [10]

    Ddamülira, M., Lüca, F. and Rakotomalala, M., On a problem of Pillai with Fibonacci numbers and powers of 2, Proc. Indian Acad. Sci. Math. Sci., 127(3) (2017), 411421.

    • Search Google Scholar
    • Export Citation
  • [11]

    Ddamulira, M., Gómez Ruiz, C. A. and Luca, F., On a problem of Pillai with k-generalized Fibonacci numbers and powers of 2, Monatsh. Math., 187(4) (2018), 635664.

    • Search Google Scholar
    • Export Citation
  • [12]

    García Lomeli, A. M. and Hernández Hernández, S., Pillai's problem with Padovan numbers and powers of two, Rev. Colombiana Mat., 53(1) (2019), 114.

    • Search Google Scholar
    • Export Citation
  • [13]

    Hernane, M. O., Luca, F., Rihane, S. E. and Togbé, A., On Pillai's problem with Pell numbers and powers of 2, Hardy-Ramanujan J., 41 (2018), 2231.

    • Search Google Scholar
    • Export Citation
  • [14]

    Hernandez, S. H., Luca, F. and Rivera, L. M. On Pillai's problem with the Fibonacci and Pell sequences, Bol. Soc. Mat. Mex., 2018.

  • [15]

    Dujella, A. and Pethő, A., A generalization of a theorem of Baker and Davenport, Q. J. Math., 49(195) (1998), 291306.

  • [16]

    Gúzman, S. S. and Luca, F., Linear combinations of factorials and s-units in a binary recurrence sequence, Ann. Math. Qué., 38(2) (2014), 169188.

    • Search Google Scholar
    • Export Citation
  • [17]

    Herschfeld, A., The equation 2x − 3y = d, Bull. Amer. Math. Soc., 41 (1935), 631.

  • [18]

    Herschfeld, A., The equation 2x − 3y = d, Bull. Amer. Math. Soc., 42 (1936), 231234.

  • [19]

    Matveev, E. M. An explicit lower bound for a homogeneous rational linear form in the logarithms of algebraic numbers II, Izv. Ross. Akad. Nauk Ser. Mat. 64(6) (2000), 125180, in Russian; English translation in Izv. Math. 64(6) (2000), 12171269.

    • Search Google Scholar
    • Export Citation
  • [20]

    Mihăilescu, P., Primary cyclotomic units and a proof of Catalan's conjecture, J. Reine Angew. Math., 572 (2006), 167195.

  • [21]

    OEIS Foundation Inc., The On-Line Encyclopedia of Integer Sequences, 2019, https://oeis.org.

  • [22]

    Pillai, S. S. On ax −by = c, J. Indian Math. Soc. (N.S.), 2 (1936), 119122.

  • [23]

    Pillai, S. S. A correction to the paper On ax − by = c, J. Indian Math. Soc. (N.S.), 2 (1937), 215.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu