View More View Less
  • 1 Universidad del Cauca, Calle 5 No 4–70 Popayán, Colombia
  • 2 University of the Witwatersrand, Private Bag X3, Wits 2050, South Africa
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

The Pell sequence (Pn)n=0 is given by the recurrence Pn = 2Pn−1 + Pn−2 with initial condition P0 = 0, P1 = 1 and its associated Pell-Lucas sequence (Qn)n=0 is given by the same recurrence relation but with initial condition Q0 = 2, Q1 = 2. Here we show that 6 is the only perfect number appearing in these sequences. This paper continues a previous work that searched for perfect numbers in the Fibonacci and Lucas sequences.

  • [1]

    Bicknell, N., A primer on the Pell sequence and related sequence, Fibonacci Quart., 13 (4) (1975), 345349.

  • [2]

    Cohn, J. H. E., Perfect Pell powers, Glasgow Math. J., 38 (1996), 1920.

  • [3]

    Dickson, L. E., History of the Theory of Numbers, Vol. I, Divisiblity and Primality, Chelsea Publishing Company, New–York, 1966.

  • [4]

    Horadam, A. F., Applications of Modified Pell Numbers to Representations, Ulam Quart., 3 (1994), 3453.

  • [5]

    Kilic, E. and Tasci, D., The linear algebra of the Pell matrix, Bol. Soc. Mat. Mexicana, 11 (2005), 163174.

  • [6]

    Koshy, T., Fibonacci and Lucas Numbers with Applications, Wiley–Interscience Publications, 2001.

  • [7]

    Ljunggren, W., Zur Theorie der Gleichung x 2 + 1 = Dy 4, Avh. Norske Vid Akad. Oslo, 5 (1942).

  • [8]

    Luca, F., Perfect Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo (2), 49 (2000) 313318.

  • [9]

    Luca, F. and Mignotte, M., ϕ(F 11) =88, Divulgaciones Matemáaticas, (2) 14 (2006) 101106.

  • [10]

    Luca, F. and Nicolae, F., ϕ(Fm) = F n, Integers, 9 (2009), A30.

  • [11]

    Luca, F. and Pollack, P., Multiperfect numbers with identical digits, J. Number Theory, 131 (2011), 260284.

  • [12]

    Luca, F. and Stanica, P., Equations with arithmetic functions of Pell numbers, Bull. Math. Soc. Sci. Math. Roumanie. Tome 57(105) No. 4, (2014), 409413.

    • Search Google Scholar
    • Export Citation
  • [13]

    Ochem, P. and Rao, M., Odd perfect numbers are greater than 101500, Math. Comp., 81 (2012), no. 279, 18691877.

  • [14]

    Pethő, A., The Pell sequence contains only trivial perfect powers. Sets, graphs and numbers (Budapest, 1991), 561–568, Colloq. Math. Soc. János Bolyai, 60, North–Holland, Amsterdam, 1992. MR94e:11031.

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu