View More View Less
  • 1 University of Delhi, Delhi–110 007, India
  • 2 University of Delhi, Delhi–110 007, India
  • 3 National Institute of Technology, Tiruchirappalli–620015, India
Full access

Abstract

Sufficient conditions on associated parameters p, b and c are obtained so that the generalized and “normalized” Bessel function up(z) = up,b,c(z) satisfies the inequalities ∣(1 + (zup(z)/up(z)))2 − 1∣ < 1 or ∣((zu p(z))′/up(z))2 − 1∣ < 1. We also determine the condition on these parameters so that (4(p+(b+1)/2)/c)up'(x)1+z. Relations between the parameters μ and p are obtained such that the normalized Lommel function of first kind hμ,p(z) satisfies the subordination 1+(zhμ,p''(z)/hμ,q'(z))1+z. Moreover, the properties of Alexander transform of the function hμ,p(z) are discussed.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Baricz, Á., Generalized Bessel functions of the first kind, Lecture Notes in Mathematics, 1994, Springer-Verlag, Berlin, 2010.

  • [2]

    Baricz, Á., Deniz, E., Çağlar, M. and Orhan, H., Differential subordinations involving generalized Bessel functions, Bull. Malays. Math. Sci. Soc., 38 (3) (2015), 12551280.

    • Search Google Scholar
    • Export Citation
  • [3]

    Á. Baricz and Frasin, B. A., Univalence of integral operators involving Bessel functions, Appl. Math. Lett., 23 (4) (2010), 371376.

    • Search Google Scholar
    • Export Citation
  • [4]

    Baricz, Á., Kupán, P. A. and Szász, R., The radius of starlikeness of normalized Bessel functions of the first kind, Proc. Amer. Math. Soc., 142 (6) (2014), 20192025.

    • Search Google Scholar
    • Export Citation
  • [5]

    Baricz, A. and Ponnusamy, S., Starlikeness and convexity of generalized Bessel functions, Integral Transforms Spec. Funct., 21 (9) (2010), 641653.

    • Search Google Scholar
    • Export Citation
  • [6]

    Baricz, A. and Ponnusamy, S., Differential inequalities and Bessel functions, J. Math. Anal. Appl., 400 (2) (2013), 558567.

  • [7]

    Baricz, A. and Yağmur, N., Geometric properties of some Lommel and Struve functions, Ramanujan J., 42 (2) (2017), 325346.

  • [8]

    Bohra, N. and Ravichandran, V., On confluent hypergeometric functions and generalized Bessel functions, Anal. Math., 43 (4) (2017), 533545.

    • Search Google Scholar
    • Export Citation
  • [9]

    Brown, R. K., Univalence of Bessel functions, Proc. Amer. Math. Soc., 11 (1960), 278283.

  • [10]

    Deniz, E., Convexity of integral operators involving generalized Bessel functions, Integral Transforms Spec. Funct., 24 (3) (2013), 201216.

    • Search Google Scholar
    • Export Citation
  • [11]

    Kanas, S., Mondal, S. R. and Mohammed, A. D., Relations between the generalized Bessel functions and the Janowski class, Math. Inequal. Appl., 21 (1) (2018), 165178.

    • Search Google Scholar
    • Export Citation
  • [12]

    Madaan, V., Kumar, A. and Ravichandran, V., Starlikeness associated with lemniscate of Bernoulli, Filomat, 33 (7) (2019), 19371955.

  • [13]

    Miller, S. S. and Mocanu, P. T., Differential subordinations, Monographs and Textbooks in Pure and Applied Mathematics, 225, Marcel Dekker, Inc., New York, 2000.

    • Search Google Scholar
    • Export Citation
  • [14]

    Prajapat, J. K., Certain geometric properties of normalized Bessel functions, Appl. Math. Lett., 24 (12) (2011), 21332139.

  • [15]

    Radhika, V., Sivasubramanian, S., Cho, N. E. and Murugusundaramoorthy, G., Geometric properties of Bessel functions for the classes of Janowski starlike and convex functions, J. Comput. Anal. Appl., 25 (3) (2018), 452466.

    • Search Google Scholar
    • Export Citation
  • [16]

    Shanmugam, T. N., Convolution and differential subordination, Internat. J. Math. Math. Sci., 12 (2) (1989), 333340.

  • [17]

    Szász, R., About the radius of starlikeness of Bessel functions of the first kind, Monatsh. Math., 176 (2) (2015), 323330.

  • [18]

    Yağmur, N., Hardy space of Lommel functions, Bull. Korean Math. Soc., 52 (3) (2015), 10351046.

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE