View More View Less
  • 1 University of Delhi, Delhi-110007, India
  • 2 University of Delhi, Delhi-110007, India
Full access

Abstract

In this paper, it has been investigated that how various stronger notions of sensitivity like 𝓕-sensitive, multi-𝓕-sensitive, (𝓕1, 𝓕2)-sensitive, etc., where 𝓕, 𝓕1, 𝓕2 are Furstenberg families, are carried over to countably infinite product of dynamical systems having these properties and vice versa. Similar results are also proved for induced hyperspaces.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Auslander, J. and Yorke, J. A., Interval maps, factors of maps, and chaos, Tôhoku Math. J., 32 (2), 2 (1980), 177188.

  • [2]

    Değirmenci, N. and Koçak, Ş., Chaos in product maps, Turkish J. Math., 34 (4), (2010), 593600.

  • [3]

    Huang, W., Kolyada, S. and Zhang, G., Auslander-Yorke dichotomy theorem, multi-sensitivity and Lyapunov numbers, arXiv preprint arXiv: 1504.00587 (2016).

    • Search Google Scholar
    • Export Citation
  • [4]

    Jiao, L., Wang, L., Li, F. and Liu, H.v, On multi-sensitivity with respect to a vector, Modern Phys. Lett. B, 32 (15), (2018), 1850166.

    • Search Google Scholar
    • Export Citation
  • [5]

    Li, J., Oprocha, P. and Wu, X., Furstenberg families, sensitivity and the space of probability measures, Nonlinearity, 30 (3), (2017), 9871005.

    • Search Google Scholar
    • Export Citation
  • [6]

    Li, R., A note on stronger forms of sensitivity for dynamical systems, Chaos Solitons Fractals, 45 (6), (2012), 753758.

  • [7]

    Li, R., Zhao, Y., Wang, H., Jiang, R. and Liang, H., F-sensitivity and (F 1, F 2)-sensitivity between dynamical systems and their induced hyperspace dynamical systems, J. Nonlinear Sci. Appl., 10 (4), (2017), 16401651.

    • Search Google Scholar
    • Export Citation
  • [8]

    Li, R. and Zhou, X., A note on chaos in product maps, Turkish J. Math., 37 (4), (2013), 665675.

  • [9]

    Li, T. Y. and Yorke, J. A., Period three implies chaos, Amer. Math. Monthly, 82 (10), (1975), 985992.

  • [10]

    Liu, H., Liao, L. and Wang, L., Thickly syndetical sensitivity of topological dynamical system, Discrete Dyn. Nat. Soc. (2014), Art. ID 583431, 4.

    • Search Google Scholar
    • Export Citation
  • [11]

    Mangang, K., B., Product dynamical systems, Far East J. Dyn. Syst., 24 (2014), 113.

  • [12]

    Mangang, K. B., Mean equicontinuity, sensitivity, expansiveness and distality of product dynamical systems, J. Dyn. Syst. Geom. Theor. 13 (2015), 2733.

    • Search Google Scholar
    • Export Citation
  • [13]

    Moothathu, T. K. S., Stronger forms of sensitivity for dynamical systems, Non-linearity, 20 (9), (2007), 21152126.

  • [14]

    Shao, S., Proximity and distality via Furstenberg families, Topology Appl., 153 (12), (2006), 20552072.

  • [15]

    Tan, F. and Xiong, J., Chaos via Furstenberg family couple, Topology Appl., 156 (3), (2009), 525532.

  • [16]

    Tan, F. and Zhang, R., On F-sensitive pairs, Acta Math. Sci. Ser. B (Engl. Ed.), 31 (4), (2011), 14251435.

  • [17]

    Thakur, R. and Das, R., Devaney chaos and stronger forms of sensitivity on the product of semiflows, Semigroup Forum, 98 (3), (2019), 631644.

    • Search Google Scholar
    • Export Citation
  • [18]

    Wang, H., Xiong, J. and Tan, F., Furstenberg families and sensitivity, Discrete Dyn. Nat. Soc. (2010), Art. ID 649348, 12.

  • [19]

    Wang, X., Wu, X. and Chen, G., Sufficient conditions for ergodic sensitivity, J. Nonlinear Sci. Appl., 10 (7), (2017), 34043408.

  • [20]

    Wu, X., Li, R. and Zhang, Y., The multi-F-sensitivity and (F 1, F 2)-sensitivity for product systems, J. Nonlinear Sci. Appl., 9 (6), (2016), 43644370.

    • Search Google Scholar
    • Export Citation
  • [21]

    Wu, X., Wang, J. and Chen, G., F-sensitivity and multi-sensitivity of hyperspatial dynamical systems, J. Math. Anal. Appl., 429 (1), (2015), 1626.

    • Search Google Scholar
    • Export Citation
  • [22]

    Wu, X. and Zhu, P., Dense chaos and densely chaotic operators, Tsukuba J. Math., 36 (2), (2012), 367375.

  • [23]

    Wu, X. and Zhu, P., Devaney chaos and Li-Yorke sensitivity for product systems, Studia Sci. Math. Hungar., 49 (4), (2012), 538548.

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE