View More View Less
  • 1 Russian-Armenian University, 123 Hovsep Emin St, Yerevan 0051, Armenia
  • 2 Boston University, 111 Cummington Mall, Boston, MA 02215, USA
Full access

Abstract

In this paper, we obtain necessary as well as sufficient conditions for exponential rate of decrease of the variance of the best linear unbiased estimator (BLUE) for the unknown mean of a stationary sequence possessing a spectral density. In particular, we show that a necessary condition for variance of BLUE to decrease to zero exponentially is that the spectral density vanishes on a set of positive Lebesgue measure in any vicinity of zero.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Adenstedt, R. K., On large-sample estimation for the mean of a stationary random sequence, Ann. Stat., 2 (1974), 10951107.

  • [2]

    Adenstedt, R. K. and Eisenberg, B., Linear estimation of regression coefficients, Quart. Appl. Math., 32(3) (1974), 317327.

  • [3]

    Babayan, N. M., On asymptotic behavior of the prediction error in the singular case, Theory Probab. Appl, 29(1), 147150 (1985).

  • [4]

    Goluzin, G. M., Geometric Theory of Functions of a Complex Variable, Amer. Math. Soc., Providence, 1969.

  • [5]

    Grenander, U., Stochastic processes and statistical inference, Ark. Mat., 1(17) (1950), 195277.

  • [6]

    Grenander, U., On Toeplitz forms and stationary processes, Ark. Mat., 1(37) (1952), 555571.

  • [7]

    Grenander, U. and Szegő, G., Toeplitz Forms and Their Applications, University of California Press, Berkeley, 1958.

  • [8]

    Mazurkievicz, S., Un theoreme sur les polynomes, Ann. Soc. Polon. Math., 18 (1945), 113118.

  • [9]

    Rosenblatt, M., Some Purely Deterministic Processes, J. of Math. and Mech., 6 (1957), 801810.

  • [10]

    Samarov, A. and Taqqu, M. S., On the efficiency of the sample mean in longmemory noise, J. Time Series Analysis, 9 (1988), 191200.

  • [11]

    Vitale, R. A., An asymptotically efficient estimate in time series analysis, Quart. Appl. Math., 30 (1973), 421440.

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE