View More View Less
  • 1 Zhoukou Normal University, Zhoukou (Henan), P. R. China
  • 2 University of Salento, P. O. Box 193, 73100 Lecce, Italy
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

Two classes of trigonometric sums about integer powers of secant function are evaluated that are closely related to Jordan's totient function.

  • [1]

    Annaby, M. H. and Asharabi, R. M., Exact evaluations of finite trigonometric sums by sampling theorems, Acta Math. Sci. Ser. B, 31 (2) (2011), 408418.

    • Search Google Scholar
    • Export Citation
  • [2]

    Apostol, T. M., Another elementary proof of Euler's formula for ξ(2n), Amer. Math. Monthly, 80 (4) (1973), 425431.

  • [3]

    Barbero, S., Dickson polynomials, Chebyshev polynomials, and some conjectures of Jeffery, J. Integer Seq., 17 (3) (2014), Article 14.3.8.

    • Search Google Scholar
    • Export Citation
  • [4]

    Berndt, B. C. and Yeap, B. P., Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. Appl. Math., 29 (3) (2002), 358385.

    • Search Google Scholar
    • Export Citation
  • [5]

    Borwein, J. M. and Chamberland, M., Integer powers of arcsin, Int. J. Math. Math. Sci., 2007 (10) (2007), Article ID 19381.

  • [6]

    Byrne, G. J. and Smith, S. J., Some integer-valued trigonometric sums, Proc. Edin. Math. Society, 40 (2) (1997), 393401.

  • [7]

    Chu, W., Summations on trigonometric functions, Appl. Math. Comput., 141 (1) (2003), 161176.

  • [8]

    Chu, W., Reciprocal relations for trigonometric sums, Rocky Mountain J. Math., 48 (1) (2018), 121140.

  • [9]

    Chu, W. and Marini, A., Partial fractions and trigonometric identities, Adv. Appl. Math., 23 (2) (1999), 115175.

  • [10]

    Chu, W. and Wang, C. Y., Trigonometric approach to convolution formulae of Bernoulli and Euler numbers, Rend. Mat. Ser. VII, 30 (3–4) (2010), 249274.

    • Search Google Scholar
    • Export Citation
  • [11]

    Chu, W. and Wang, X. Y., Reciprocal relations for Bernoulli and Euler numbers/polynomials, Integral Transforms Spec Funct., 29 (10) (2018), 831841.

    • Search Google Scholar
    • Export Citation
  • [12]

    Comtet, L., Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974 (Chap. III).

  • [13]

    Cvijovic, D., Closed-form summation of two families of finite tangent sums, Appl. Math. Comput., 196 (2) (2008), 661665.

  • [14]

    Cvijovic, D., Summation formulae for finite cotangent sums, Appl. Math. Comput., 215 (3) (2009), 11351140.

  • [15]

    Cvijovic, D. and Klinowski, J., Finite cotangent sums and the Riemann zeta function, Math. Slovaca, 50 (2) (2000), 149157.

  • [16]

    Cvijovic, D. and Srivastava, H. M., Summation of a family of finite secant sums, Appl. Math. Comput., 190 (1) (2007), 590598.

  • [17]

    Cvuovic, D. and Srivastava, H. M., Closed-form summation of the Dowker and related sums, J. Math. Phys., 48 (4) (2007), 043507.

  • [18]

    Fonseca, C. M., Glasser, M. L. and Kowalenko, V., Basic trigonometric power sums with applications, Ramanujan J., 42 (2) (2017), 401428.

    • Search Google Scholar
    • Export Citation
  • [19]

    Fisher, M. E., Sum of inverse powers of cosines (L.A. Gardner, Jr.), SIAM Review, 13 (1971), 116119.

  • [20]

    Gardner, L. A., Sum of inverse powers of cosines, SIAM Review, 11 (4) (1969), 621.

  • [21]

    Grabner, P. J. and Prodinger, H., Secant and cosecant sums and Bernoulli-Norlund polynomials, Quaest. Math., 30 (2) (2007), 159165.

  • [22]

    Hassan, H. A., New trigonometric sums by sampling theorem, J. Math. Anal. Appl., 339 (2) (2008), 811827.

  • [23]

    Merca, M., A note on cosine power sums, J. Integer Seq., 15 (5) (2012), Article 12.5.3.

  • [24]

    Osipov, N., Problem 12003, Amer. Math. Monthly, 124 (8) (2017), p. 754.

  • [25]

    Sloane, N. J. A., The Online Encyclopedia of Integer Sequences, https://oeis.org/.

  • [26]

    Wang, X. and Zheng, D. Y., Summation formulae on trigonometric functions, J. Math. Anal. Appl, 335 (2) (2007), 10201037.

  • [27]

    Wang, X. and Zheng, D. Y., Partial fraction decompositions and further trigonometric identities, Util. Math., 77 (2008), 173192.

  • [28]

    Weisstein, E. W., Kronecker Symbol in MathWorld, Wolfram Web Resource: http://mathworld.wolfram.com/KroneckerSymbol.html.

  • [29]

    Williams, K. S., On n = 1 1 / n 2 k, Math. Mag., 44 (1971), 273276.

  • [30]

    Williams, K. S. and Zhang, N. Y., Evaluation of two trigonometric sums, Math. Slovaca, 44 (5) (1994), 575583.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu