View More View Less
  • 1 Zhoukou Normal University, Zhoukou (Henan), P. R. China
  • 2 University of Salento, P. O. Box 193, 73100 Lecce, Italy
Full access

Abstract

Two classes of trigonometric sums about integer powers of secant function are evaluated that are closely related to Jordan's totient function.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • [1]

    Annaby, M. H. and Asharabi, R. M., Exact evaluations of finite trigonometric sums by sampling theorems, Acta Math. Sci. Ser. B, 31 (2) (2011), 408418.

    • Search Google Scholar
    • Export Citation
  • [2]

    Apostol, T. M., Another elementary proof of Euler's formula for ξ(2n), Amer. Math. Monthly, 80 (4) (1973), 425431.

  • [3]

    Barbero, S., Dickson polynomials, Chebyshev polynomials, and some conjectures of Jeffery, J. Integer Seq., 17 (3) (2014), Article 14.3.8.

    • Search Google Scholar
    • Export Citation
  • [4]

    Berndt, B. C. and Yeap, B. P., Explicit evaluations and reciprocity theorems for finite trigonometric sums, Adv. Appl. Math., 29 (3) (2002), 358385.

    • Search Google Scholar
    • Export Citation
  • [5]

    Borwein, J. M. and Chamberland, M., Integer powers of arcsin, Int. J. Math. Math. Sci., 2007 (10) (2007), Article ID 19381.

  • [6]

    Byrne, G. J. and Smith, S. J., Some integer-valued trigonometric sums, Proc. Edin. Math. Society, 40 (2) (1997), 393401.

  • [7]

    Chu, W., Summations on trigonometric functions, Appl. Math. Comput., 141 (1) (2003), 161176.

  • [8]

    Chu, W., Reciprocal relations for trigonometric sums, Rocky Mountain J. Math., 48 (1) (2018), 121140.

  • [9]

    Chu, W. and Marini, A., Partial fractions and trigonometric identities, Adv. Appl. Math., 23 (2) (1999), 115175.

  • [10]

    Chu, W. and Wang, C. Y., Trigonometric approach to convolution formulae of Bernoulli and Euler numbers, Rend. Mat. Ser. VII, 30 (3–4) (2010), 249274.

    • Search Google Scholar
    • Export Citation
  • [11]

    Chu, W. and Wang, X. Y., Reciprocal relations for Bernoulli and Euler numbers/polynomials, Integral Transforms Spec Funct., 29 (10) (2018), 831841.

    • Search Google Scholar
    • Export Citation
  • [12]

    Comtet, L., Advanced Combinatorics, Dordrecht-Holland, The Netherlands, 1974 (Chap. III).

  • [13]

    Cvijovic, D., Closed-form summation of two families of finite tangent sums, Appl. Math. Comput., 196 (2) (2008), 661665.

  • [14]

    Cvijovic, D., Summation formulae for finite cotangent sums, Appl. Math. Comput., 215 (3) (2009), 11351140.

  • [15]

    Cvijovic, D. and Klinowski, J., Finite cotangent sums and the Riemann zeta function, Math. Slovaca, 50 (2) (2000), 149157.

  • [16]

    Cvijovic, D. and Srivastava, H. M., Summation of a family of finite secant sums, Appl. Math. Comput., 190 (1) (2007), 590598.

  • [17]

    Cvuovic, D. and Srivastava, H. M., Closed-form summation of the Dowker and related sums, J. Math. Phys., 48 (4) (2007), 043507.

  • [18]

    Fonseca, C. M., Glasser, M. L. and Kowalenko, V., Basic trigonometric power sums with applications, Ramanujan J., 42 (2) (2017), 401428.

    • Search Google Scholar
    • Export Citation
  • [19]

    Fisher, M. E., Sum of inverse powers of cosines (L.A. Gardner, Jr.), SIAM Review, 13 (1971), 116119.

  • [20]

    Gardner, L. A., Sum of inverse powers of cosines, SIAM Review, 11 (4) (1969), 621.

  • [21]

    Grabner, P. J. and Prodinger, H., Secant and cosecant sums and Bernoulli-Norlund polynomials, Quaest. Math., 30 (2) (2007), 159165.

  • [22]

    Hassan, H. A., New trigonometric sums by sampling theorem, J. Math. Anal. Appl., 339 (2) (2008), 811827.

  • [23]

    Merca, M., A note on cosine power sums, J. Integer Seq., 15 (5) (2012), Article 12.5.3.

  • [24]

    Osipov, N., Problem 12003, Amer. Math. Monthly, 124 (8) (2017), p. 754.

  • [25]

    Sloane, N. J. A., The Online Encyclopedia of Integer Sequences, https://oeis.org/.

  • [26]

    Wang, X. and Zheng, D. Y., Summation formulae on trigonometric functions, J. Math. Anal. Appl, 335 (2) (2007), 10201037.

  • [27]

    Wang, X. and Zheng, D. Y., Partial fraction decompositions and further trigonometric identities, Util. Math., 77 (2008), 173192.

  • [28]

    Weisstein, E. W., Kronecker Symbol in MathWorld, Wolfram Web Resource: http://mathworld.wolfram.com/KroneckerSymbol.html.

  • [29]

    Williams, K. S., On n = 1 1 / n 2 k, Math. Mag., 44 (1971), 273276.

  • [30]

    Williams, K. S. and Zhang, N. Y., Evaluation of two trigonometric sums, Math. Slovaca, 44 (5) (1994), 575583.

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE