View More View Less
  • 1 University of Kurdistan, P. O. Box 416, Sanandaj, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $800.00

Abstract

Let X be a Hilbert C*-module over a C*-algebra B. In this paper we introduce two classes of operator algebras on the Hilbert C*-module X called operator algebras with property k and operator algebras with property ℤ, and we study the first (continuous) cohomology group of them with coefficients in various Banach bimodules under several conditions on B and X. Some of our results generalize the previous results. Also we investigate some properties of these classes of operator algebras.

  • [1]

    Brown, L. G., Stable isomorphism of hereditary subalgebras of C*-algebras, Pacific J. Math., 71 (1977), 335348.

  • [2]

    Chernoff, P. R., Representations, automorphisms, and derivations of some operator algebras, J. Funct. Anal., 12 (1973), 275289.

  • [3]

    Christensen, E., Derivations of nest algebras, Math. Ann., 229 (1977), 155161.

  • [4]

    He, J., Li, J. and Zhao, D., Derivations, local and 2-local derivations on some algebras of operators on Hilbert C*-modules, Mediterr. J. Math., 14 (230) (2017).

    • Search Google Scholar
    • Export Citation
  • [5]

    Johnson, B. E. and Sinclair, A. M., Continuity of derivations and a problem of Kaplansky, Am. J. Math., 90 (1968), 10671073.

  • [6]

    Kadison, R. V., Derivations of operator algebras, Ann. Math., 83 (2) (1966), 280293.

  • [7]

    Kaplansky, I., Modules over operator algebras, Amer. J. Math., 75 (1953), 839853.

  • [8]

    Lance, C., Hilbert C*-modules, London Math. Soc. Lecture Notes Series, 210, Cambridge University Press, Cambridge, 1995.

  • [9]

    Li, P., Han, D. and Tang, W., Derivations on the algebras of operators in Hilbert C*-modules, Acta Math. Sinca (Engl. Ser)., 28 (2012), 16151622.

    • Search Google Scholar
    • Export Citation
  • [10]

    Manuilov, V. M. and Troitsky, E. V., Hilbert C*-modules, Translation of Mathematical Monograph, 226, American Mathematical Society, Providence, RI, 2005.

    • Search Google Scholar
    • Export Citation
  • [11]

    Moghadam, M. K., Miri, M. and Janfada, A., A note on derivations on the algebra of operators in Hilbert C * -modules, Mediterr. J. Math., 13 (2016), 11671175.

    • Search Google Scholar
    • Export Citation
  • [12]

    Palmer, T. W., Banach algebras and the general theory of *-algebras, Volume, Algebras and Banach algebras, Cambridge University Press, Cambridge, 1994.

    • Search Google Scholar
    • Export Citation
  • [13]

    Paschke, W., Inner product modules over B*-algebra, Trans. Amer. Math. Soc., 182 (1973), 443468.

  • [14]

    Rieffel, M. A., Induced representations of C*-algebras, Adv. In Math., 13 (1974), 176257.

  • [15]

    Sahleh, A. and Najarpisheh, L., Derivations of operators on Hilbert modules, Gen. Math. Notes., 24 (1) (2014), 5257.

  • [16]

    Sakai, S., Derivations of W*-algebras, Ann. Math., 83 (1966), 273279.

  • [17]

    Sakai, S., Derivations of simple C*-algebras, J. Funct. Anal., 2 (1968), 202206.

  • [18]

    Sakai, S., Derivations of simple C*-algebras II, Bull. Soc. Math. France, 99 (1971), 259263.

  • [19]

    Thomas, M. P., The image of a derivation is contained in the radical, Ann. Math., 128 (1988), 435460.

The author instruction is available in PDF.

Please, download the file from HERE

Manuscript submission: HERE

 

  • Impact Factor (2018): 0.309
  • Mathematics (miscellaneous) SJR Quartile Score (2018): Q3/li>
  • Scimago Journal Rank (2018): 0.253
  • SJR Hirsch-Index (2018): 21

Language: English, French, German

Founded in 1966
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 57.
Indexing and Abstracting Services:

  • CompuMath Citation Index
  • Mathematical Reviews
  • Referativnyi Zhurnal/li>
  • Research Alert
  • Science Citation Index Expanded (SciSearch)/li>
  • SCOPUS
  • The ISI Alerting Services

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Pálfy Péter Pál

Managing Editor(s): Sági, Gábor

Editorial Board

  • Biró, András (Number theory)
  • Csáki, Endre (Probability theory and stochastic processes, Statistics)
  • Domokos, Mátyás (Algebra (Ring theory, Invariant theory))
  • Győri, Ervin (Graph and hypergraph theory, Extremal combinatorics, Designs and configurations)
  • O. H. Katona, Gyula (Combinatorics)
  • Márki, László (Algebra (Semigroup theory, Category theory, Ring theory))
  • Némethi, András (Algebraic geometry, Analytic spaces, Analysis on manifolds)
  • Pach, János (Combinatorics, Discrete and computational geometry)
  • Rásonyi, Miklós (Probability theory and stochastic processes, Financial mathematics)
  • Révész, Szilárd Gy. (Analysis (Approximation theory, Potential theory, Harmonic analysis, Functional analysis))
  • Ruzsa, Imre Z. (Number theory)
  • Soukup, Lajos (General topology, Set theory, Model theory, Algebraic logic, Measure and integration)
  • Stipsicz, András (Low dimensional topology and knot theory, Manifolds and cell complexes, Differential topology)
  • Szász, Domokos (Dynamical systems and ergodic theory, Mechanics of particles and systems)
  • Tóth, Géza (Combinatorial geometry)

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu