Let m ≠ 0, ±1 and n ≥ 2 be integers. The ring of algebraic integers of the pure fields of type
In this paper we explicitly give an integral basis of the field
Berwick, W. E. H., Integral bases, Cambridge University Press (Cambridge Tracts in Mathematics and Mathematical Physics No. 22) (1927).
Dedekind, R., Ueber die Anzahl der Idealklassen in reinen kubischen Zahlkörpern, J. Reine Angew. Math., 121 (1900), 40–123.
Funakura, T., On integral bases of pure quartic fields, Math. J. Okayama Univ., 26 (1984), 27–41.
El Fadil, L., Montes, J. and Nart, E., Newton polygons and p-integral bases of quartic number fields, J. Algebra Appl., 11 (4) (2012), 33 p.
Gaal, I. and Remete, L., Integral bases and monogenity of pure fields, Journal of Number Theory, 173 (2017), 129–146.
Gaál, I. and Remete, L., Integral bases and monogenity of the simplest sextic fields, Acta Arithmetica, 182 (2) (2018), 173–183.
Gassert, T. A., A note on the monogenity of power maps, Albanian Journal of Mathematics, 11 (2017), 3–12.
Guàrdia, J., Montes, J. and Nart, E., Newton polygons of higher order in algebraic number theory, Trans. Amer. Math. Soc., 364 (1) (2012) 361–416.
Hameed, A. and Nakahara, T., Integral bases and relative monogenity of pure octic fields, Bull. Math. Soc. Sci. Math. Repub. Soc. Roum., Nouv. Sér., 58 (106), (2015) No. 4, 419–433.
Hameed, A., Nakahara, T., Husnine, S. M. and Ahmad, S., On existence of canonical number system in certain classes of pure algebraic number fields, J. Prime Research in Mathematics, 7 (2011), 19–24.
Narkiewicz, W., Elementary and analytic theory of algebraic numbers, 3rd ed., Springer Monogr. Math. (2004).
Okutsu, K., Integral basis of the field ℚ ( n a ), Proc. Japan Acad., Ser. A, 58 (1982), 219–222.
Ore, Ø., Newtonsche Polygone in der Theorie der algebraischen Körper, Math. Ann., 99 (1928) 84–117.
Pohst, M. and Zassenhaus, H., Algorithmic algebraic number theory, Cambridge University Press, (1989).