Authors:
András Gyárfás Alfréd Rényi Institute of Mathematics, Budapest, P.O. Box 127, Budapest, Hungary, H-1364

Search for other papers by András Gyárfás in
Current site
Google Scholar
PubMed
Close
and
Gábor N. Sárközy Alfréd Rényi Institute of Mathematics, Budapest, P.O. Box 127, Budapest, Hungary, H-1364
Computer Science Department, Worcester Polytechnic Institute, Worcester, MA, USA

Search for other papers by Gábor N. Sárközy in
Current site
Google Scholar
PubMed
Close
Open access

A proper edge coloring of a graph 𝐺 is strong if the union of any two color classes does not contain a path with three edges (i.e. the color classes are induced matchings). The strong chromatic index 𝑞(𝐺) is the smallest number of colors needed for a strong coloring of 𝐺. One form of the famous (6, 3)-theorem of Ruzsa and Szemerédi (solving the (6, 3)-conjecture of Brown–Erdős–Sós) states that 𝑞(𝐺) cannot be linear in 𝑛 for a graph 𝐺 with 𝑛 vertices and 𝑐𝑛2 edges. Here we study two refinements of 𝑞(𝐺) arising from the analogous (7, 4)-conjecture. The first is 𝑞𝐴(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that the union of any two color classes does not contain a path or cycle with four edges, we call it an A-coloring. The second is 𝑞𝐵(𝐺), the smallest number of colors needed for a proper edge coloring of 𝐺 such that all four-cycles are colored with four different colors, we call it a B-coloring. These notions lead to two stronger and one equivalent form of the (7, 4)-conjecture in terms of 𝑞𝐴(𝐺), 𝑞𝐵(𝐺) where 𝐺 is a balanced bipartite graph. Since these are questions about graphs, perhaps they will be easier to handle than the original special(7, 4)-conjecture. In order to understand the behavior of 𝑞𝐴(𝐺) and 𝑞𝐵(𝐺), we study these parameters for some graphs.

We note that 𝑞𝐴(𝐺) has already been extensively studied from various motivations. However, as far as we know the behavior of 𝑞𝐵(𝐺) is studied here for the first time.

  • [1]

    N. Alon, A. Moitra, and B. Sudakov. Nearly complete graphs decomposable into large induced matchings and their applications. J. European Math. Soc., 15:15751596, 2013.

    • Search Google Scholar
    • Export Citation
  • [2]

    M. Axenovich. A generalized Ramsey problem. Discrete Mathematics, 222:247249, 2000.

  • [3]

    W. G. Brown, P. Erdős, and V. T. Sós. Some extremal problems on 𝑟-graphs. In New directions in the theory of graphs, Proc. 3rd Ann Arbor Conference on Graph Theory. Academic Press, New York, 1973, 5563.

    • Search Google Scholar
    • Export Citation
  • [4]

    H. Bruhn and F. Joos. A stronger bound for the strong chromatic index. Combinatorics, Probability and Computing, 27:2143, 2017.

  • [5]

    L. Bezegová, B. Lužar, M. Mockovčiakova, R. Soták, and R. Škrekovski. Star edge coloring of some classes of graphs. Journal of Graph Theory, 81:7382, 2016.

    • Search Google Scholar
    • Export Citation
  • [6]

    D. Conlon and J. Fox. Graph removal lemmas. Surveys in Combinatorics. Cambridge University Press, 150, 2013.

  • [7]

    D. Conlon, L. Gishboliner, Y. Levanzov, and A. Shapira. A new bound for the Brown–Erdős– Sós problem. arXiv:1912.08834, 2019.

  • [8]

    C. J. Colbourn and A. Rosa. Triple Systems. Oxford Mathematics Monographs, Calendron Press, 1999.

  • [9]

    K. Deng, X. S. Liu, and S. L. Tian. Star edge coloring of 𝑑-dimensional grids. Journal of East China Norm. Univ. Sci. Ed., 3:1316, 2012.

    • Search Google Scholar
    • Export Citation
  • [10]

    Z. Dvořak, B. Mohar, and R. Šámal. Star Chromatic Index. Journal of Graph Theory, 72:313326, 2013.

  • [11]

    P. Erdős. On the combinatorial problems which I would most like to see solved. Combinatorica, 1:2542, 1981.

  • [12]

    P. Erdős and A. Gyárfás. A variant of the classical Ramsey problem. Combinatorica, 17:459467, 1997.

  • [13]

    P. Erdős and D.J. Kleitman. On coloring graphs to maximize the proportion of multicolored 𝑘-edges. J. of Combinatorial Theory, 5:164169, 1968.

    • Search Google Scholar
    • Export Citation
  • [14]

    R. J. Faudree, A. Gyárfás, R. H. Schelp, and Zs. Tuza. The strong chromatic index of graphs. Ars Combinatoria, 29B:205211, 1990.

  • [15]

    R. J. Faudree, A. Gyárfás, L. Lesniak, and R. H. Schelp. Rainbow coloring of the cube, Journal of Graph Theory, 17:607612, 1993.

  • [16]

    J. Fox, H. Huang, and B. Sudakov. On graphs decomposable into induced matchings of linear sizes. Bull. London Math. Soc., 49:4557, 2017.

    • Search Google Scholar
    • Export Citation
  • [17]

    J. L. Fouguet and J. L. Jolivet. Strong edge colorings of graphs and applications to multi-𝑘-gons. Ars Combinatoria, 16A:141150, 1983.

    • Search Google Scholar
    • Export Citation
  • [18]

    P. Frankl and V. Rödl. Extremal problems for set systems. Random Structures and Algorithms, 20:131164, 2002.

  • [19]

    A. Gyárfás and G. N. Sárközy. Turán and Ramsey numbers in linear triple systems. Discrete Mathematics, 344 (2021), 112258.

  • [20]

    S. M. Johnson. A new upper bound for error correcting codes. IRE Trans. Inform. Theory, IT-8:203207, 1962.

  • [21]

    P. Keevash and J. Long. The Brown–Erdős–Sós conjecture for hypergraphs of large uniformity. arXiv:2007.14824, 2020. To appear in Proc. Amer. Math. Soc.

    • Search Google Scholar
    • Export Citation
  • [22]

    J. Komlós and M. Simonovits. Szemerédi’s Regularity Lemma and its applications in graph theory. In Combinatorics, Paul Erdős is Eighty (D. Miklós, V.T. Sós, and T. Szőnyi, Eds.), 295352, Bolyai Society Mathematical Studies, Vol. 2, Budapest, 1996.

    • Search Google Scholar
    • Export Citation
  • [23]

    M. Kwan, A. Sah, M. Sawhney, and M. Simkin. High-girth Steiner triple systems. arXiv:2201.04554.

  • [24]

    H. Liu, R. Morris, and N. Prince. Highly connected monochromatic subgraphs of multicoloured graphs. J. Graph Theory, 61:2244, 2009.

  • [25]

    J. Long. A note on the Brown-Erdős-Sós conjecture. arXiv:1902.07693v3.

  • [26]

    H. Lei and Y. Shi. A survey on star edge-coloring of graphs. arXiv:2009.08017

  • [27]

    M. Molloy and B. Reed. Graph colouring and the probabilistic method. Springer, 2002.

  • [28]

    M. Mockovčiaková. Distance constrained edge colorings of graphs, PhD thesis. P. J. Safárik University, Faculty of Science, Kosice, 2013.

    • Search Google Scholar
    • Export Citation
  • [29]

    D. Mubayi. Generalizing the Ramsey problem through diameter. Electronic Journal of Combinatorics, 9:R41, 2002.

  • [30]

    R. Nenadov, B. Sudakov, and M. Tyomkyn. Proof of the Brown–Erdős–Sós conjecture in groups. Math. Proc. Camb. Phil. Soc, 169:323333, 2020.

    • Search Google Scholar
    • Export Citation
  • [31]

    B. Omoomi and M. V. Dastjerdi. Star edge coloring of the Cartesian product of graphs. Australasian Journal of Combinatorics, 79:1530, 2021.

    • Search Google Scholar
    • Export Citation
  • [32]

    Z. Ruzsa and E. Szemerédi. Triple systems with no six points carrying three triangles. In Combinatorics (Keszthely, 1976), Coll. Math. Soc. J. Bolyai 18, Volume II., 939945.

    • Search Google Scholar
    • Export Citation
  • [33]

    J. Solymosi. The (7, 4)-Conjecture in finite groups. Random Structures and Algorithms, 24:680686, 2015.

  • [34]

    G. N. Sárközy and S. Selkow. An extension of the Ruzsa–Szemerédi Theorem. Combinatorica, 25(1):7784, 2005.

  • [35]

    A. Shapira and M. Tyomkyn. A Ramsey variant of the Brown–Erdős–Sós conjecture. Bulletin of the London Math Society, 53:14531469, 2021.

    • Search Google Scholar
    • Export Citation
  • [36]

    E. Szemerédi. Regular partitions of graphs. Colloques Internationaux C.N.R.S. No 260–Problèmes Combinatoires et Théorie des Graphes, Orsay (1976), 399–401.

    • Search Google Scholar
    • Export Citation
  • [37]

    C. Wong. On the existence of dense substructures in finite groups. arXiv:1902.07819v1.

  • [38]

    X. Zhao and X. Zhou. Strong chromatic index of graphs: a short survey. International Journal of Engineering Research and Science, 1:18, 2015.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)