Authors:
Bushra Basit Department of Algebra and Geometry, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary

Search for other papers by Bushra Basit in
Current site
Google Scholar
PubMed
Close
and
Zsolt Lángi Department of Algebra and Geometry, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
MTA-BME Morphodynamics Research Group, Műegyetem rkp. 3., H-1111 Budapest, Hungary

Search for other papers by Zsolt Lángi in
Current site
Google Scholar
PubMed
Close
Open access

A classical result of Dowker (Bull. Amer. Math. Soc. 50: 120-122, 1944) states that for any plane convex body 𝐾, the areas of the maximum (resp. minimum) area convex 𝑛-gons inscribed (resp. circumscribed) in 𝐾 is a concave (resp. convex) sequence. It is known that this theorem remains true if we replace area by perimeter, or convex 𝑛-gons by disk-𝑛-gons, obtained as the intersection of 𝑛 closed Euclidean unit disks. It has been proved recently that if 𝐶 is the unit disk of a normed plane, then the same properties hold for the area of 𝐶-𝑛-gons circumscribed about a 𝐶-convex disk 𝐾 and for the perimeters of 𝐶-𝑛-gons inscribed or circumscribed about a 𝐶-convex disk 𝐾, but for a typical origin-symmetric convex disk 𝐶 with respect to Hausdorff distance, there is a 𝐶-convex disk 𝐾 such that the sequence of the areas of the maximum area 𝐶-𝑛-gons inscribed in 𝐾 is not concave. The aim of this paper is to investigate this question if we replace the topology induced by Hausdorff distance with a topology induced by the surface area measure of the boundary of 𝐶.

  • [1]

    R. P. Bambah and C. A. Rogers. Covering the planes with convex sets. J. London Math. Soc., 27:304314, 1952.

  • [2]

    Bushra Basit and Zsolt Lángi. Dowker-type theorems for disk-polygons in normed planes. Discrete Math., accepted for publication, 2024.

  • [3]

    Károly Bezdek and Zsolt Lángi. From the separable Tammes problem to extremal distributions of great circles in the unit sphere. Discrete Comput. Geom., 2023.

    • Search Google Scholar
    • Export Citation
  • [4]

    Károly Bezdek, Zsolt Lángi, Márton Naszódi, and Peter Papez. Ball-polyhedra. Discrete Comput. Geom., 38(2):201230, 2007.

  • [5]

    C. H. Dowker. On minimum circumscribed polygons. Bull. Amer. Math. Soc., 50:120122, 1944.

  • [6]

    H. G. Eggleston. Approximation to plane convex curves. I. Dowker-type theorems. Proc. London Math. Soc. (3), 7:351377, 1957.

  • [7]

    G. Fejes Tóth and F. Fodor. Dowker-type theorems for hyperconvex discs. Period. Math. Hungar., 70(2):131144, 2015.

  • [8]

    L. Fejes Tóth. Regular figures. The Macmillan Company, New York, 1964.

  • [9]

    László Fejes Tóth. Some packing and covering theorems. Acta Sci. Math. (Szeged), 12:6267, 1950.

  • [10]

    László Fejes Tóth. Remarks on polygon theorems of Dowker. Mat. Lapok, 6:176179, 1955.

  • [11]

    Daniel Hug and Rolf Schneider. Hölder continuity for support measures of convex bodies. Arch. Math. (Basel), 104(1):8392, 2015.

  • [12]

    Zsolt Lángi, Márton Naszódi, and István Talata. Ball and spindle convexity with respect to a convex body. Aequationes Math., 85(1-2):4167, 2013.

    • Search Google Scholar
    • Export Citation
  • [13]

    Horst Martini, Konrad J. Swanepoel, and Gunter Weiß. The geometry of Minkowski spaces—a survey. I. Expo. Math., 19(2):97142, 2001.

    • Search Google Scholar
    • Export Citation
  • [14]

    Anton E. Mayer. Eine Überkonvexität. Math. Z., 39(1):511531, 1935.

  • [15]

    József Molnár. On inscribed and circumscribed polygons of convex regions. Mat. Lapok, 6:210218, 1955.

  • [16]

    Roman Prosanov. On a relation between packing and covering densities of convex bodies. Discrete Comput. Geom., 65(4):10281037, 2021.

  • [17]

    Rolf Schneider. Convex bodies: the Brunn-Minkowski theory, volume 151 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, expanded edition, 2014.

    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)