Authors:
Tamás Ágoston HUN-REN Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest, Hungary
Eötvös Loránd University, Dept. of Geometry, Budapest, Hungary

Search for other papers by Tamás Ágoston in
Current site
Google Scholar
PubMed
Close
and
András Némethi HUN-REN Alfréd Rényi Institute of Mathematics, Reáltanoda utca 13-15, H-1053, Budapest, Hungary
Eötvös Loránd University, Dept. of Geometry, Budapest, Hungary
Babeş-Bolyai Univ., Str, M. Kogălniceanu 1, 400084 Cluj-Napoca, Romania
Basque Center for Applied Math., Mazarredo, 14 E48009 Bilbao, Basque Country – Spain

Search for other papers by András Némethi in
Current site
Google Scholar
PubMed
Close
Open access

In this paper we introduce a construction for a weighted CW complex (and the associated lattice cohomology) corresponding to partially ordered sets with some additional structure. This is a generalization of the construction seen in [4] where we started from a system of subspaces of a given vector space. We then proceed to prove some basic properties of this construction that are in many ways analogous to those seen in the case of subspaces, but some aspects of the construction result in complexities not present in that scenario.

  • [1]

    T. Ágoston and A. Némethi. The analytic lattice cohomology of surface singularities. https://arxiv.org/abs/2108.12294, 2021.

  • [2]

    T. Ágoston and A. Némethi. Analytic lattice cohomology of surface singularities, II (the equivariant case). https://arxiv.org/abs/2108.12429, 2021.

    • Search Google Scholar
    • Export Citation
  • [3]

    T. Ágoston and A. Némethi. The analytic lattice cohomology of isolated singularities. https://arxiv.org/abs/2109.11266, 2021.

  • [4]

    T. Ágoston and A. Némethi. Analytic lattice cohomology of isolated curve singularities. https://arxiv.org/abs/2108.12294, 2021.

  • [5]

    I. Dai and C. Manolescu. Involutive Heegaard Floer homology and plumbed three-manifolds. J. Inst. Math. Jussieu, 18(6):11151155, 2019.

    • Search Google Scholar
    • Export Citation
  • [6]

    A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte. Annals of Math., 67(2):239281, 1958.

  • [7]

    D. Eisenbud and W. D. Neumann. Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Annals of Math. Studies, 110. Princeton University Press, 1985

    • Search Google Scholar
    • Export Citation
  • [8]

    E. Gorsky and A. Némethi. Lattice and Heegaard Floer homologies of algebraic links. Int. Math. Research Notices, 2015(23):1273712780, 2015.

    • Search Google Scholar
    • Export Citation
  • [9]

    J. Hom, Ç. Karakurt, and T. Lidman. Surgery obstructions and Heegaard Floer homology. Geometry & Topology, 20(4):22192251, 2016.

  • [10]

    Ç. Karakurt and T. Lidman. Rank inequalities for the Heegaard Floer homology of Seifert homology spheres. Transactions of the Amer. Math. Soc. 367(10):72917322, 2015.

    • Search Google Scholar
    • Export Citation
  • [11]

    Ç. Karakurt and F. Ozturk. Contact Structures on AR-singularity links. Internat. J. Math., 29(3):1850019, 2018.

  • [12]

    T. László and A. Némethi. Reduction theorem for lattice cohomology. Int. Math. Research Notices, 2015(11):29382985, 2015.

  • [13]

    J. W. Milnor. Singular points of complex hypersurfaces. Annals of Math. Studies, 61. Princeton University Press, 1969

  • [14]

    A. Némethi. On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds. Geometry & Topology, 9(2):9911042, 2005.

  • [15]

    A. Némethi. Graded roots and singularities. In J.-P. Brasselet, J. N. Damon, D. T. , M. Oka, editors, Singularities in Geometry and Topology, 394463. World Scientific, 2007.

    • Search Google Scholar
    • Export Citation
  • [16]

    A. Némethi. Lattice cohomology of normal surface singularities. Publ. of the Res. Inst. for Math. Sci., 44(2):507543, 2008.

  • [17]

    A. Némethi. The Seiberg–Witten invariants of negative definite plumbed 3-manifolds. J. Eur. Math. Soc., 13(4):959974, 2011.

  • [18]

    A. Némethi. Normal surface singularities. Ergebnisse der Math. und ihrer Grenzgebiete, 74. Springer, 2022.

  • [19]

    A. Némethi and B. Sigurðson. The geometric genus of hypersurface singularities. Journal of the Eur. Math. Soc., 18(4):825851, 2016.

    • Search Google Scholar
    • Export Citation
  • [20]

    P. S. Ozsváth and Z. Szabó. On the Floer homology of plumbed three-manifolds. Geometry & Topology, 7(1):185224, 2003.

  • [21]

    P. S. Ozsváth and Z. Szabó. Holomorphic disks, link invariants and the multi-variable Alexander polynomial. Algebraic & Geometric Topology, 8(2):615692, 2008.

    • Search Google Scholar
    • Export Citation
  • [22]

    J. P. Serre. Groupes algébriques et corps de classes. Actualités Scientifiques et Industrielles, 1264. Hermann, 1959.

  • [23]

    J. Stevens. Kulikov singularities: A study of a class of complex surface singularities with their hyperplane sections. PhD thesis, Leiden University, 1985.

    • Search Google Scholar
    • Export Citation
  • [24]

    G. W. Whithead. Elements of Homotopy Theory. Springer, 1995.

  • [25]

    I. Zemke. The equivalence of lattice and Heegaard Floer homology. https://arxiv.org/abs/2111.14962, 2021.

  • Collapse
  • Expand

Editors in Chief

Gábor SIMONYI (Rényi Institute of Mathematics)
András STIPSICZ (Rényi Institute of Mathematics)
Géza TÓTH (Rényi Institute of Mathematics) 

Managing Editor

Gábor SÁGI (Rényi Institute of Mathematics)

Editorial Board

  • Imre BÁRÁNY (Rényi Institute of Mathematics)
  • Károly BÖRÖCZKY (Rényi Institute of Mathematics and Central European University)
  • Péter CSIKVÁRI (ELTE, Budapest) 
  • Joshua GREENE (Boston College)
  • Penny HAXELL (University of Waterloo)
  • Andreas HOLMSEN (Korea Advanced Institute of Science and Technology)
  • Ron HOLZMAN (Technion, Haifa)
  • Satoru IWATA (University of Tokyo)
  • Tibor JORDÁN (ELTE, Budapest)
  • Roy MESHULAM (Technion, Haifa)
  • Frédéric MEUNIER (École des Ponts ParisTech)
  • Márton NASZÓDI (ELTE, Budapest)
  • Eran NEVO (Hebrew University of Jerusalem)
  • János PACH (Rényi Institute of Mathematics)
  • Péter Pál PACH (BME, Budapest)
  • Andrew SUK (University of California, San Diego)
  • Zoltán SZABÓ (Princeton University)
  • Martin TANCER (Charles University, Prague)
  • Gábor TARDOS (Rényi Institute of Mathematics)
  • Paul WOLLAN (University of Rome "La Sapienza")

STUDIA SCIENTIARUM MATHEMATICARUM HUNGARICA
Gábor Sági
Address: P.O. Box 127, H–1364 Budapest, Hungary
Phone: (36 1) 483 8344 ---- Fax: (36 1) 483 8333
E-mail: smh.studia@renyi.mta.hu

Indexing and Abstracting Services:

  • CABELLS Journalytics
  • CompuMath Citation Index
  • Essential Science Indicators
  • Mathematical Reviews
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • Zentralblatt MATH

2024  
Scopus  
CiteScore  
CiteScore rank  
SNIP  
Scimago  
SJR index 0.305
SJR Q rank Q3

2023  
Web of Science  
Journal Impact Factor 0.4
Rank by Impact Factor Q4 (Mathematics)
Journal Citation Indicator 0.49
Scopus  
CiteScore 1.3
CiteScore rank Q2 (General Mathematics)
SNIP 0.705
Scimago  
SJR index 0.239
SJR Q rank Q3

Studia Scientiarum Mathematicarum Hungarica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article (only for OA publications)
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2025 Online subsscription: 796 EUR / 876 USD
Print + online subscription: 900 EUR / 988 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Studia Scientiarum Mathematicarum Hungarica
Language English
French
German
Size B5
Year of
Foundation
1966
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0081-6906 (Print)
ISSN 1588-2896 (Online)