In this paper we introduce a construction for a weighted CW complex (and the associated lattice cohomology) corresponding to partially ordered sets with some additional structure. This is a generalization of the construction seen in [4] where we started from a system of subspaces of a given vector space. We then proceed to prove some basic properties of this construction that are in many ways analogous to those seen in the case of subspaces, but some aspects of the construction result in complexities not present in that scenario.
T. Ágoston and A. Némethi. The analytic lattice cohomology of surface singularities. https://arxiv.org/abs/2108.12294, 2021.
T. Ágoston and A. Némethi. Analytic lattice cohomology of surface singularities, II (the equivariant case). https://arxiv.org/abs/2108.12429, 2021.
T. Ágoston and A. Némethi. The analytic lattice cohomology of isolated singularities. https://arxiv.org/abs/2109.11266, 2021.
T. Ágoston and A. Némethi. Analytic lattice cohomology of isolated curve singularities. https://arxiv.org/abs/2108.12294, 2021.
I. Dai and C. Manolescu. Involutive Heegaard Floer homology and plumbed three-manifolds. J. Inst. Math. Jussieu, 18(6):1115–1155, 2019.
A. Dold and R. Thom. Quasifaserungen und unendliche symmetrische Produkte. Annals of Math., 67(2):239–281, 1958.
D. Eisenbud and W. D. Neumann. Three-Dimensional Link Theory and Invariants of Plane Curve Singularities. Annals of Math. Studies, 110. Princeton University Press, 1985
E. Gorsky and A. Némethi. Lattice and Heegaard Floer homologies of algebraic links. Int. Math. Research Notices, 2015(23):12737–12780, 2015.
J. Hom, Ç. Karakurt, and T. Lidman. Surgery obstructions and Heegaard Floer homology. Geometry & Topology, 20(4):2219–2251, 2016.
Ç. Karakurt and T. Lidman. Rank inequalities for the Heegaard Floer homology of Seifert homology spheres. Transactions of the Amer. Math. Soc. 367(10):7291–7322, 2015.
Ç. Karakurt and F. Ozturk. Contact Structures on AR-singularity links. Internat. J. Math., 29(3):1850019, 2018.
T. László and A. Némethi. Reduction theorem for lattice cohomology. Int. Math. Research Notices, 2015(11):2938–2985, 2015.
J. W. Milnor. Singular points of complex hypersurfaces. Annals of Math. Studies, 61. Princeton University Press, 1969
A. Némethi. On the Ozsváth–Szabó invariant of negative definite plumbed 3-manifolds. Geometry & Topology, 9(2):991–1042, 2005.
A. Némethi. Graded roots and singularities. In J.-P. Brasselet, J. N. Damon, D. T. Lê, M. Oka, editors, Singularities in Geometry and Topology, 394–463. World Scientific, 2007.
A. Némethi. Lattice cohomology of normal surface singularities. Publ. of the Res. Inst. for Math. Sci., 44(2):507–543, 2008.
A. Némethi. The Seiberg–Witten invariants of negative definite plumbed 3-manifolds. J. Eur. Math. Soc., 13(4):959–974, 2011.
A. Némethi. Normal surface singularities. Ergebnisse der Math. und ihrer Grenzgebiete, 74. Springer, 2022.
A. Némethi and B. Sigurðson. The geometric genus of hypersurface singularities. Journal of the Eur. Math. Soc., 18(4):825–851, 2016.
P. S. Ozsváth and Z. Szabó. On the Floer homology of plumbed three-manifolds. Geometry & Topology, 7(1):185–224, 2003.
P. S. Ozsváth and Z. Szabó. Holomorphic disks, link invariants and the multi-variable Alexander polynomial. Algebraic & Geometric Topology, 8(2):615–692, 2008.
J. P. Serre. Groupes algébriques et corps de classes. Actualités Scientifiques et Industrielles, 1264. Hermann, 1959.
J. Stevens. Kulikov singularities: A study of a class of complex surface singularities with their hyperplane sections. PhD thesis, Leiden University, 1985.
G. W. Whithead. Elements of Homotopy Theory. Springer, 1995.
I. Zemke. The equivalence of lattice and Heegaard Floer homology. https://arxiv.org/abs/2111.14962, 2021.