View More View Less
  • 1 Eszterházy Károly University, Leányka u. 6, H-3300 Eger, Hungary
Open access

Spindle oscillations are generated predominantly during sleep state II, through cyclical interactions between thalamocortical and reticular neurons. Inhibition from reticular cells is critical for this activity; it enables burst firing by the de-inactivation of T-type Ca2+ channels. While the effect of different channelopathies on spindling is extensively investigated, our knowledge about the role of intrathalamic connections is limited. Therefore, we explored how the connection pattern and the density of reticular inhibitory synapses affect spindle activity in a thalamic network model. With more intrareticular connections, synchronous firing of reticular cells, and intraspindle burst frequency decreased, spindles lengthened. In models with strong intrareticular inhibition spindle activity was impaired, and a sustained 6–8 Hz oscillation was generated instead. The strength of reticular innervation onto thalamocortical cells played a key role in the generation of oscillations; it determined the amount of thalamocortical cell bursts, and consequently spindle length. Focal inputs supported bursts but affected only a few cells thus barely reinforced network activity, while diffuse contacts aided bursts only when a sufficient number of reticular cells fired synchronously. According to our study, alterations in the connection pattern influence thalamic activities and may contribute to pathological conditions, or alternatively, they serve as a compensatory mechanism.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • 1.

    Avoli, M. (2012) A brief history on the oscillating roles of thalamus and cortex in absence seizures. Epilepsia 53, 779789.

  • 2.

    Barthó, P., Slézia, A., Mátyás, F., Faradzs-Zade, L., Ulbert, I., Harris, K. D., Acsády, L. (2014) Ongoing network state controls the length of sleep spindles via inhibitory activity. Neuron 82, 13671379.

    • Search Google Scholar
    • Export Citation
  • 3.

    Cavdar, S., Hacioglu, H., Dogukan, S. Y., Onat, F. (2012) Do the quantitative relationships of synaptic junctions and terminals in the thalamus of genetic absence epilepsy rats from Strasbourg (GAERS) differ from those in normal control Wistar rats? Neurol. Sci. 33, 251259.

    • Search Google Scholar
    • Export Citation
  • 4.

    Clemente-Perez, A., Makinson, S. R., Higashikubo, B., Brovarney, S., Cho, F. S., Urry, A., Holden, S. S., Wimer, M., Dávid, C., Fenno, L.E., Acsády, L., Deisseroth, K., Paz, J. T. (2017) Distinct thalamic reticular cell types differentially modulate normal and pathological cortical rhythms. Cell Rep. 19, 21302142.

    • Search Google Scholar
    • Export Citation
  • 5.

    Cox, C. L., Huguenard, J. R., Prince, D. A. (1997) Nucleus reticularis neurons mediate diverse inhibitory effects in thalamus. Proc. Natl. Acad. Sci. U. S. A. 94, 88548859.

    • Search Google Scholar
    • Export Citation
  • 6.

    Destexhe, A., Contreras, D., Sejnowski, T. J., Steriade, M. (1994) A model of spindle rhythmicity in the isolated thalamic reticular nucleus. J. Neurophysiol. 72, 803818.

    • Search Google Scholar
    • Export Citation
  • 7.

    Destexhe, A., Bal, T., McCormick, D. A., Sejnowski, T. J. (1996) Ionic mechanisms underlying synchronized oscillations and propagating waves in a model of ferret thalamic slices. J. Neurophysiol. 76, 20492070.

    • Search Google Scholar
    • Export Citation
  • 8.

    Fama, R., Sullivan, E. V. (2015) Thalamic structures and associated cognitive functions: Relations with age and aging. Neurosci. Biobehav. Rev. 54, 2937.

    • Search Google Scholar
    • Export Citation
  • 9.

    Ferrarelli, F., Tononi, G. (2011) The thalamic reticular nucleus and schizophrenia. Schizophr. Bull. 37, 306315.

  • 10.

    Fogerson, P. M., Huguenard, J. R. (2016) Tapping the brakes: cellular and synaptic mechanisms that regulate thalamic oscillations. Neuron 92, 687704.

    • Search Google Scholar
    • Export Citation
  • 11.

    Gentet, L. J., Ulrich, D. (2003) Strong, reliable and precise synaptic connections between thalamic relay cells and neurones of the nucleus reticularis in juvenile rats. J. Physiol. 546, 801811.

    • Search Google Scholar
    • Export Citation
  • 12.

    Grant, E., Hoerder-Suabedissen, A., Molnár, Z. (2012) Development of the corticothalamic projections. Front Neurosci. 6, 53.

  • 13.

    Hines, M., Carnevale, T. (2015) NEURON simulation environment in: Jaeger, D., Jung, R. (eds) Encyclopedia of Computational Neuroscience. Springer Science+Business Media, New York, pp. 20122017.

    • Search Google Scholar
    • Export Citation
  • 14.

    Hou, G., Smith, A. G., Zhang, Z. W. (2016) Lack of intrinsic GABAergic connections in the thalamic reticular nucleus of the mouse. J. Neurosci. 36, 72467252.

    • Search Google Scholar
    • Export Citation
  • 15.

    von Krosigk, M., Bal, T., McCormick, D. A. (1993) Cellular mechanisms of a synchronized oscillation in the thalamus. Science 261, 361364.

    • Search Google Scholar
    • Export Citation
  • 16.

    Lam, Y. W., Sherman, S. M. (2005) Mapping by laser photostimulation of connections between the thalamic reticular and ventral posterior lateral nuclei in the rat. J. Neurophysiol. 94, 24722483.

    • Search Google Scholar
    • Export Citation
  • 17.

    Lee, S. E., Lee, J., Latchoumane, C., Lee, B., Oh, S. J., Saud, Z. A., Park, C., Sun, N., Cheong, E., Chen, C. C., Choi, E. J., Lee, C. J., Shin, H. S. (2014) Rebound burst firing in the reticular thalamus is not essential for pharmacological absence seizures in mice. Proc. Natl Acad. Sci. U. S. A. 111, 11828121833.

    • Search Google Scholar
    • Export Citation
  • 18.

    Maheshwari, A., Noebels, J. L. (2014) Monogenic models of absence epilepsy: windows into the complex balance between inhibition and excitation in thalamocortical microcircuits. Prog. Brain Res. 213, 223252.

    • Search Google Scholar
    • Export Citation
  • 19.

    McCormick, D. A., Bal, T. (1997) Sleep and arousal: thalamocortical mechanisms. Annu. Rev. Neurosci. 20, 185215.

  • 20.

    Pinault, D. (2004) The thalamic reticular nucleus: structure, function and concept. Brain Res. Revs, 46, 131.

  • 21.

    Schofield, C. M., Kleiman-Weiner, M., Rudolph, U., Huguenard, J. R. (2009) A gain in GABAA receptor synaptic strength in thalamus reduces oscillatory activity and absence seizures. Proc. Natl Acad. Sci. U. S. A. 106, 76307635.

    • Search Google Scholar
    • Export Citation
  • 22.

    Sitnikova, E., Hramov, A. E., Grubov, V., Koronovsky, A. A. (2014) Time-frequency characteristics and dynamics of sleep spindles in WAG/Rij rats with absence epilepsy. Brain Res. 1543, 290299.

    • Search Google Scholar
    • Export Citation
  • 23.

    Sohal, V. S., Huguenard, J. R. (2003) Inhibitory interconnections control burst pattern and emergent network synchrony in reticular thalamus. J. Neurosci. 23, 89788988.

    • Search Google Scholar
    • Export Citation
  • 24.

    Sohal, V. S., Pangratz-Fuehrer, S., Rudolph, U., Huguenard, J. R. (2006) Intrinsic and synaptic dynamics interact to generate emergent patterns of rhythmic bursting in thalamocortical neurons. J. Neurosci. 26, 42474255.

    • Search Google Scholar
    • Export Citation
  • 25.

    Tancredi, V., Biagini, G., D’Antuono, M., Louvel, J., Pumain, R., Avoli, M. (2000) Spindle-like thalamocortical synchronization in a rat brain slice preparation. J. Neurophysiol. 84, 10931097.

    • Search Google Scholar
    • Export Citation
  • 26.

    Ujma, P. P., Konrad, B. N., Genzel, L., Bleifuss, A., Simor, P., Pótári, A., Körmendi, J., Gombos, F., Steiger, A., Bódizs, R., Dresler, M. (2014) Sleep spindles and intelligence: evidence for a sexual dimorphism. J. Neurosci. 34, 1635816368.

    • Search Google Scholar
    • Export Citation
  • 27.

    Zhou, C., Ding, L., Deel, M. E., Ferrick, E. A., Emeson, R. B., Gallagher, M. J. (2015) Altered intrathalamic GABAA neurotransmission in a mouse model of a human genetic absence epilepsy syndrome. Neurobiol. Dis. 73, 407417.

    • Search Google Scholar
    • Export Citation