View More View Less
  • 1 University of Pécs, Hungary
  • 2 Semmelweis University, Hungary
  • 3 Eötvös Loránd University, Hungary
  • 4 University of Pécs, Hungary
Open access

Introduction

Several Aristolochia species were used as medicinal herb across Europe and in recent years, their antimicrobial activity has also been investigated.

Materials and methods

In this study, A. clematitis was selected to evaluate the aristolochic acids I and II (AA I and AA II) concentrations and the antimicrobial activity of methanol, hexane, butanol, and ethyl acetate extracts of the root, stem, leaf, root, and fruit. AA I and AA II contents were measured by a validated high-performance liquid chromatography–ultraviolet method.

Results

Each fraction of the plant contained AA I and AA II and the root was found to have the highest contents of AA I (1.09%) and AA II (0.7454%). The minimum inhibitory concentrations of all extracts were determined by standard microdilution method. The fruit’s extracts showed the most efficient antimicrobial effect against both methicillin sensitive and resistant Staphylococcus aureus strains.

Conclusion

Correlation between the AA I and AA II concentrations and the antimicrobial effect was not found.

Abstract

Introduction

Several Aristolochia species were used as medicinal herb across Europe and in recent years, their antimicrobial activity has also been investigated.

Materials and methods

In this study, A. clematitis was selected to evaluate the aristolochic acids I and II (AA I and AA II) concentrations and the antimicrobial activity of methanol, hexane, butanol, and ethyl acetate extracts of the root, stem, leaf, root, and fruit. AA I and AA II contents were measured by a validated high-performance liquid chromatography–ultraviolet method.

Results

Each fraction of the plant contained AA I and AA II and the root was found to have the highest contents of AA I (1.09%) and AA II (0.7454%). The minimum inhibitory concentrations of all extracts were determined by standard microdilution method. The fruit’s extracts showed the most efficient antimicrobial effect against both methicillin sensitive and resistant Staphylococcus aureus strains.

Conclusion

Correlation between the AA I and AA II concentrations and the antimicrobial effect was not found.

Introduction

A number of recently discovered medications are based on herbs used as remedies for centuries. Some of them with antibacterial, antifungal and antiprotozoal activities are widely used both in human and veterinary medicine (Heinrich et al., 2004). Plants are possible sources of antimicrobial compounds for modern medicine with valuable therapeutic potential, which are not just effective in the treatment but may mitigate the side effects of synthetic antimicrobial agents (Iwu et al., 1999).

Aristolochia (birthwort) is a large genus belonging to Aristolochiaceae family. Many investigations analyzed the components of species of this genus. Aristolochia trilobata L. stem contains carboxylic acid ester (6-methyl-5-hepten-2-yl acetate), terpenes (limonene, linalool, and p-cymene), sesquiterpene (bicyclogermacrene), and sesquiterpenoid (spathulenol; Santos et al., 2014). Isoquinoline alkaloids (constrictosoines) were isolated from the aerial parts of Aristolochia constricta Grisebach. (Rastrelli et al., 1997). Futhermore isoquinolones, biphenyl ethers (aristogin F), and benzoyl benzyltetrahydroisoquinoline ether alkaloids were demonstrated in the root and stem extracts of Aristolochia elegans Mast. (Shi et al., 2004). Nitroaromatic compounds (9-methoxytariacuripyrone and 7,9-dimethoxytariacuripyrone) and aristolactams were detected in extracts of the rhizome of Aristolochia brevipes Benth. (Achenbach et al., 1992).

Aristolochic acids I and II (AA I and AA II; Fig. 1) as main compounds occurring in most of Aristolochia species have nephrotoxic and genotoxic effects (Heinrich et al., 2009). A case report of a patient, who had taken slimming pills contained Aristolochia fangchi Y. C. Wu ex L. D. Chow & S. M. Hwang (Chow & Hwang, 1975), described the nephropathy with renal fibrosis (Vanherweghem et al., 1993). Similar results were also observed in studies with larger sample size (Cosyns, 2003; Debelle et al., 2008).

Fig. 1.
Fig. 1.

Constitutional formulas of aristolochic acids I (A) and II (B)

Citation: Biologia Futura BiolFut 70, 4; 10.1556/019.70.2019.36

Birthworts contain minerals (Na, K, Ca, Mn, Cu, Fe, Cr, and Zn), polyphenols (Butnariu et al., 2012; Crivineanu et al., 2009) such as flavonoids and tannins (Abbouyi et al., 2016), sesquiterpenic lactone aristolone, AA I and AA II, aristolactam N-β-D-glucoside, β-sitosterol and its β-D-glucoside, aporphine alkaloid magnoflorine, sitosterol β-D-glucoside, and methyl 4-coumarate (Košťálová et al., 1991).

In pharmacological reports, A. clematitis L. has shown antioxidant activity (Abbouyi et al., 2016). Wistar rats were treated with sodium salt of AA showed dose- and time-dependent development of tumors as papillomatosis of the forestomach; in low-dose treatment (0.1 mg/kg), no tumor was found in the first 6 months, and found only after 12 and 16 months (Mengs et al., 1982). After oral treatment of rats with different metabolites of AA I and AA II (aristolactam I, aristolactam Ia, AA 1a, and 3,4-methylenedioxy-8-hydroxy-1-phenanthrenecarboxylic acid as metabolites of AA I or aristolactam Ia, aristolactam II, and 3,4-methylenedioxy-l-phenanthrenecarboxylic acid as metabolites of AA II), these metabolites were detected in the urine (Krumbiegel et al., 1987). In spite of the known toxic effect of AA, these compounds could be used topically against wound infection based on several examples from ethnopharmacology.

In this study, A. clematitis (European birthwort) was selected for analyses, which has been cultivated all across Europe (Tutin et al., 2010). In the ethnomedicine, fresh leaves were used for infected wounds as a foment (Butură, 1979; Gub, 1993; Keszeg, 1981; Péntek & Szabó, 1985) or a decoction (Dénes et al., 2014; Gub, 2000), for abscess (Szabó, 2002; Tóth & Papp, 2014), ulcer (Bahmani & Eftekhari, 2013), eczema (Tóth & Papp, 2014), and rheumatic disease both in human and ethnoveterinary medicine (Bartha et al., 2015) in Romania. The aerial part was applied for wound infection in Kosovo (Mustafa et al., 2012) and Serbia (Jarič et al., 2007), similar to the use of the root’s decoction in Bulgaria (Leporatti & Ivancheva, 2003), or that of the rhizome in Italy (Leporatti & Ivancheva, 2003).

The aims of this study were to determine the antimicrobial effect and the contents of AA I and AA II in extracts isolated from different parts of A. clematitis. Our hypothesis is that the studied plant parts contain different concentrations of AAs. AAs are slightly soluble in water but soluble in methanol, chloroform, ethyl acetate, and butanol. This supposes that the residual water extracts contain the smallest concentration of AAs and the presence of these compounds in the extract may explain the belief that the application of these plants helps in treating wound infection.

Materials and Methods

Chemicals

AA I and AA II were purchased from Sigma-Aldrich (Budapest, Hungary). The materials and reagents applied in the preparation and analysis of A. clematitis were all of analytical reagent grade of the highest purity available, such as acetonitrile (ACN; VWR Chemicals, Belgium), methanol, hexane, chloroform, ethyl acetate, and butanol (Molar Chemicals, Hungary).

Sample collection

The aerial parts and the roots of A. clematitis were collected at weed community in Augustin (Romania) in 2017. Until the time of further processing, the samples were dried at room temperature. Voucher specimen was deposited at the Department of Pharmacognosy, University of Pécs.

Preparation of extracts

The preparation of the plant’s extracts for high-performance liquid chromatography (HPLC) and microbiological analysis was performed according to Lee et al. (2014). Briefly, 3 g of dried leaf, fruit, root, and stem were ground separately. Each sample was suspended with methanol in a ratio 1:10 in Erlenmeyer flask individually and soaked by agitation at 150 rpm for 24 hr. The samples were filtered through No. 1 Whatman paper and the eluent was evaporated. Each residue was resuspended in 2 ml of methanol. An amount of 5 ml of distilled water and 5 ml of hexane were given to 1:1 ml suspension and mixed. The polar and non-polar solvent extracts were separated from each other and the hexane phase was collected and evaporated. Dried residues were measured and then chloroform, ethyl acetate, and butanol were used for further extraction. Dried residues were dissolved with dimethyl sulfoxide (DMSO; Sigma-Aldrich). Further dilutions were performed in Mueller–Hinton broth to reach the appropriate concentration of DMSO (1%–2%–2.5%) and six extracts (0.5–2 mg/ml) in each studied plant part for antimicrobial examination.

HPLC methods

The AA I and AA II contents of all 24 extracts were determined by HPLC–ultraviolet (HPLC-UV) method based on previously validated work (Sorenson & Sullivan, 2007) with minor modifications. HPLC analysis was performed by an Agilent 1260 Infinity LC system (G1312B binary gradient pump, G1367E autosampler, G1315C diode array detector, Agilent Technologies, Waldbronn, Germany). Chromatography was carried out using a Kinetex C18 column (100 mm × 4.6 mm, 2.6 μm; Phenomenex, Los Angeles, CA, USA), maintained at 20 °C. The following gradient elution program was applied at flow rate of 0.7 ml/min, where eluent A was 0.1% (v/v) formic acid, and eluent B was ACN: 0 min: 20% (v/v) B, 25 min: 70% (v/v) B, 30 min: 100% (v/v) B, 31 min: 20% (v/v) B, 40 min: 20% (v/v) B. UV detection was performed at 390 nm. Calibration curves were prepared using six concentrations between 1 and 500 μg/ml. Calibration curves were constructed by the least-square linear regression analysis with uniform weighting. Linear relationships were found for both isomers with the following equation y = 41.164 × −0.4646 (r2 = .9998) and y = 40.3225 ×−0.4516 (r2 = .9997) for AA I and AA II, respectively (x = concentration of compounds in μg/ml and y = peak area of compounds). For checking the applicability of the method, intra- and interday relative standard deviations (low, mid, and high concentrations of the standards in three parallel runs on the same day and on three successive days, respectively) were determined that were less than 1.25% and 1.48%, respectively.

Microbial strains and culture media

All of 24 extracts were tested against Staphylococcus aureus ATCC 23923, methicillin-resistant S. aureus (MRSA) ATCC 700698, Escherichia coli ATCC 25922, clinical isolates of extensive spectrum β-lactamase (ESBL)-producing E. coli, and Klebsiella pneumoniae strains, K. pneumoniae ATCC 13883, Pseudomonas aeruginosa ATCC 27853, clinical isolate of P. aeruginosa multidrug resistant (MDR), Salmonella Typhimurium [abbreviated scientific name of Salmonella enterica subsp. enterica (Le Minor and Popoff)] serovar. Typhimurium ATCC 14028, and clinical isolate of Acinetobacter baumannii MDR strain.

Mueller–Hinton broth and agar (Oxoid, Basingstoke, UK) were used as culture media for the microdilution methods and evaluation of minimum inhibitory and bactericidal concentration.

Broth microdilution method for determination of minimum inhibitory concentration (MIC) of the plant extracts

The procedure involved preparing twofold dilutions of the solved and diluted extracts (initial concentrations of extracts were 0.5–2 mg/ml depended on amounts of dried extracts, and initial DMSO concentrations were 1%–2%–2.5%) in 0.1 ml of Mueller–Hinton broth dispensed in the wells of sterile 96-wells tissue culture plate (Sarstedt, Nu¨rnbrecht, Germany). Each extract fraction was diluted three times for each investigated bacterium strain. Bacterial inoculums were prepared in sterile physiological saline (0.9% NaCl) after dilution of standardized microbial suspension adjusted to 0.5 McFarland scale. The wells were inoculated with 0.01 ml of 5 × 106 CFU/ml bacterial suspension and then the microplates were incubated at 37 °C overnight. The wells were examined for turbidity by the unaided eye and the concentration of extract where the growth of bacteria was inhibited giving the MIC. Subcultures were performed from unturbid wells for the determination of the bactericidal concentration. Appropriate antibiotics (depending on the strain, e.g., vancomycin for MRSA strain) were used as a positive control in microdilution, and diluted DMSO solution was used as a negative control (Clinical and Laboratory Standards Institute, 2012).

Results

AA I and AA II contents by HPLC

All extracts of the studied plant parts of A. clematitis contained AA I. The root showed the highest amount in each extract especially its ethyl acetate extract with the highest value of the compound (1,347.9 μg). In the stem, the chloroform phase contained the highest (160.4 μg), whereas in the leaf, the water phase contained the less amount of AA I (0.0004 mg; Table 1).

Table 1.

Aristolochic acids I and II (AA I and AA II) contents in the studied extracts of A. clematitis

Studied partSolventWeight of extract after evaporation (mg)AA I (μg)AA I (%)AA II (μg)AA II (%)
RootMethanol101.8698.60.6862480.80.4723
Hexane12.09.00.07505.40.0450
Chloroform7.25727.9444328.14.5569
Ethyl acetate321,347.94,2122953.62.9800
Butanol57.4194.40.3387161.70.2817
Water48.61.30.00271.10.0023
Total2591,823.21,09001930.70.7454
StemMethanol50.48.50.01692.20.0044
Hexane0.80.70.08740.20.0250
Chloroform1.2160.413.366737.13.0917
Ethyl acetate4.855.91.164616.10.3354
Butanol10.59.50.09002.80.0267
Water42.70.60.00140.40.0009
Total110.4235.60.213458.80.0533
LeafMethanol82.475.80.092012.00.0146
Hexane0.810.61.32500.160.0200
Chloroform1278.427.840044.24.4200
Ethyl acetate5.3200.53.783429.80.5623
Butanol34.8131.90.378919.60.0563
Water460.40.00090.20.0004
Total170.3697.60.4097105.960.0622
FruitMethanol250.92030.080911.90.0047
Hexane4.213.10.31190.80.0190
Chloroform30.2821.02.718556.90.1884
Ethyl acetate4.0654.916.3672436.510.9125
Butanol57.83790.655723.70.0410
Water198.41.40.00070.90.0004
Total545.52072.40.3799530.70.0973

Note. Bold data are the highest values.

AA II could be also detected in each extract of the studied parts of the plant. The ethyl acetate phase of the root extract contained the highest concentration of AA II (0.9536 mg), whereas the aqueous phases showed the lowest value in each extract (Table 1). An exemplified HPLC-UV chromatogram was depicted in Fig. 2.

Fig. 2.
Fig. 2.

HPLC-UV chromatogram of the chloroform phase of the root. AA I: aristolochic acid I; AA II: aristolochic acid II

Citation: Biologia Futura BiolFut 70, 4; 10.1556/019.70.2019.36

MIC of the studied extracts

Each root extract fraction, which was solved in DMSO solution, has shown antimicrobial effect against MRSA strain at MIC values 1–2 mg/ml. Butanol extract of the root inhibited the growth of S. aureus and P. aeruginosa strains, whereas water extract had effect for MRSA and MDR P. aeruginosa strains (MIC = 1–2 mg/ml; Table 2).

Table 2.

Minimum inhibitory concentrations (MICs) of the studied extracts of the root and stem of A. clematitis

StrainsRootStem
MethanolHexaneChloroformEthyl acetateButanolWaterMethanolHexaneChloroformEthyl acetateButanolWater
MIC of the extracts (μg/ml)MIC of the extracts (μg/ml)
S. aureus ATCC 23923NNNN2,0002,000NNNN1,000N
MRSA ATCC 7006982,0002,0002,0001,0001,0002,000NNNN1,000N
E. coli ATCC 25922NNNNNNNNNNNN
E. coli ESBLNNNNNNNNNNNN
K. pneumoniae ATCC 13883NNNNNNNNNN2,000N
K. pneumoniae ESBLNNNNNNNNNNNN
P. aeruginosa ATCC 27853NNNN1,0002,000NNNN2,000N
P. aeruginosa MDRNNNNN1,000NNNN2,000N
S. Typhimurium ATCC 14028NNNNNNNNNNNN
A. baumannii MDRNNNNNNNNNN1,000N

Note. N: MIC value was not determined. ESBL: extensive spectrum β-lactamase; MDR: multidrug resistant; MRSA: methicillin-resistant Staphylococcus aureus.

Butanol extract of stem inhibited the multiplication of the investigated strains by 1–2 mg/ml except for E. coli, K. pneumoniae ESBL, and S. Typhimurium.

In the studied leaf extracts, the growth of both selected S. aureus was inhibited with the methanol, hexane, and ethyl acetate extracts in 2 mg/ml concentration. The same concentration of the methanol extract did not allow the growth of K. pneumoniae and P. aeruginosa strains. P. aeruginosa was also inhibited by the ethyl acetate extract.

Multiplication of both S. aureus strains was inhibited with each extract of the fruit except for water. The most effective fraction of this part was made of ethyl acetate with 62.5–125 μg/ml against S. aureus strains, respectively, with 1 mg/ml for P. aeruginosa and 2 mg/ml for K. pneumoniae (Table 3).

Table 3.

Minimum inhibitory concentrations (MICs) of the studied extracts of the leaf and fruit of A. clematitis

Tested strainsLeafFruit
MethanolHexaneChloroformEthyl acetateButanolWaterMethanolHexaneChloroformEthyl acetateButanolWater
MIC of the extracts (μg/ml)MIC of the extracts (μg/ml)
S. aureus ATCC 239232,0002,000N2,000NN2,0005005001252,000N
MRSA ATCC 7006982,0002,000N2,000NN2,00050050062.52,000N
E. coli ATCC 25922NNNNNNNNNNNN
E. coli ESBLNNNNNNNNNNNN
K. pneumoniae ATCC 138832,000NNNNNNNN2,000NN
K. pneumoniae ESBLNNNNNNNNNNNN
P. aeruginosa ATCC 278532,000NN2,000NNN2,000N1,000NN
P. aeruginosa MDRNNNNNNNNNNNN
S. Typhimurium ATCC 14028NNNNNNNNNNNN
A. baumannii MDRNNNNNNNNNNNN

Note. N: MIC value was not determined. ESBL: extensive spectrum β-lactamase; MDR: multidrug resistant; MRSA: methicillin-resistant Staphylococcus aureus.

Discussion

In previous reports, more than 100 phytochemical compounds of different Aristolochia species have been analyzed with their biological activities (Kuo et al., 2012; Wu et al., 2004), but total phytochemical study of the root, stem, leaf, and fruit of A. clematitis and other species of the genus has not been carried out. Aristolochia species showed antibacterial and antifungal effects against various microorganisms, such as Aristolochia indica against S. aureus, Staphylococcus epidermidis, Bacillus megaterium, E. coli, Salmonella Typhi, and Vibrio cholerae (Farhana et al., 2016), Aristolochia bracteolata for Aspergillus flavus and Botrytis cinerea (Trayee et al., 2016), or A. trilobata, A. brevipes, Aristolochia monticola Brandegee and Aristolochia kristsagathra against S. aureus (Camporese et al., 2003; Moorthy et al., 2015; Murillo-Alvarez et al., 2001). Among the identified compounds, such as 7,9 dimethoxytariacuripyrone, licarin A and B have antimicrobial effect out of AAs (Kuo et al., 2012).

In this study, the examined extracts including methanol extracts of A. clematitis had no effect against E. coli similar to the report of A. brevipes and A. monticola (Murillo-Alvarez et al., 2001), in contrast with the methanol and acetone extract of A. bracteolata investigated previously (Vaghasiya & Chanda, 2007). Methanol, hexane, and ethyl acetate extracts of the leaf of A. clematitis showed the same effectivity against both S. aureus strains in higher concentration (2 mg/ml) similar to the same fractions of the leaf of A. bracteolata (Trayee et al., 2016). The most efficient antimicrobial activity against S. aureus strains was detected in the case of the fruit extracts. In contrast with earlier findings (Angalaparameswari et al., 2011), we could not demonstrate more effective antimicrobial activity with the fractions containing the highest concentration of AA I and AA II, as in the case of the chloroform fraction of the leaf having the highest AA I content but no effect against any investigated strain. It could be explained that not AA is responsible for the antimicrobial effect or the negative interactions between the components of the extracts. However, correct explanation may require further investigations.

S. aureus strains more frequently cause skin and wound infections than pneumonia. Extracts of different Aristolochia species have highest activity against this strain. Probably, tannins, phenolic compounds (four coumaric acids and flavonoids), and saponins of A. clematitis may be responsible for the antimicrobial activity of the species (Abbouyi et al., 2016; Benmehdi et al., 2017; Košťálová et al., 1991). These compounds can be solved in different concentrations in polar and non-polar solvents, so they may be found in different concentrations in each extract resulting in various antimicrobial effects.

Conclusion for Future Biology

However, AA I was previously described as a compound responsible for the antibacterial activity in some Aristolochia species but our results in A. clematitis do not confirm this fact. Further studies are required to determine whether other compounds may contribute to activity of AA I, and what kind of mechanism controls the action of the different fractions of A. clematitis, which may be responsible for the antibacterial activity. Our results could lay the scientific basic of future clinical perspectives of different parts of birthworts.

Acknowledgments

This work was supported by a grant from the OTKA (Hungarian Scientific Research Fund, K 127944); EFOP-3.6.3-VEKOP-16-2017-00009; the Semmelweis Innovation Found STIA-M-17 and STIA-18-KF; ELTE Institutional Excellence Program supported by National Research, Development and Innovation Office (NKFIH-1157-8/2019-DT); National Research, Development and Innovation Office, Hungary (grant no.: VEKOP-2.3.3-15-2017-00020), by the ÚNKP-19-4 New National Excellence Program of the Ministry for Innovation and Technology; and by the János Bolyai Research Scholarship of the Hungarian Academy of Science (to GT).

Ethical Statement:

The work does not require permission and ethical approval.

Data Accessibility:

This work does not include Supplementary Material and digital research materials.

Competing Interests:

The authors declare no competing interests.

Authors’ Contributions

SGB collected the plant samples, performed the preparation of plant’s extracts, and participated in the microbiological studies. GT, PH, and EK participated in HPLC detection as well as analysis and interpretation of data. SGB and MK significantly contributed to planning of the study, acquisition and analysis of data, and interpretation of the results. MK helped in the microbiological study and evaluation of the results. SGB, GT, PH, EK, NP, and MK participated in the drafting and revising of the article. All authors agreed with the content of the manuscript and sent it to Biologia Futura for possible publication.

References

  • Abbouyi, A. E., Soukaina, E. M., Filali-Ansari, N., Khyari, S. E. (2016) Antioxidant effect of extract of rhizomes from Aristolochia clematitis. JCBPSC 6, 427437.

    • Search Google Scholar
    • Export Citation
  • Achenbach, H., Waibel, R., Zwanzger, M., Dominguez, X. A., Espinosa, B. G., Verde, S. J., Sánchez, V. H. (1992) 9-Methoxy- and 7, 9-dimethoxytariacuripyrone, natural nitro-compounds with a new basic skeleton from Aristolochia brevipes. J. Nat. Prod. 55, 918922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angalaparameswari, S., Mohamed Saleem, T. S., Alagusundaram, M., Ramkanth, S., Thiruvengadarajan, V. S., Gnanaprakash, K., Madhusudhana Chetty, C., Pratheesh, G. (2011) Anti-microbial activity of aristolochic acid from root of Aristolochia bracteata Retz. World Acad. Sci. Eng. Technol. 5, 9.

    • Search Google Scholar
    • Export Citation
  • Bartha, S. G., Quave, C. L., Balogh, L., Papp, N. (2015) Ethnoveterinary practices of Covasna County, Transylvania, Romania. J. Ethnobiol. Ethnomed. 11, 35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahmani, M., Eftekhari, Z. (2013) An ethnoveterinary study of medicinal plants in treatment of diseases and syndromes of herd dog in southern regions of Ilam province, Iran. Comp. Clin. Path. 22, 403407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benmehdi, H., Behilil, A., Memmou, F., Amtouche, A. (2017) Free radical scavenging activity, kinetic behaviour and phytochemical constituents of Aristolochia clematitis L. roots. Arab. J. Chem. 10, S1402S1408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butnariu, M., Bostan, C., Samfira, I. (2012) Determination of mineral contents and antioxidant activity in some plants that contain allelochemicals of Banat region (Western Romania). Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 22, 95100.

    • Search Google Scholar
    • Export Citation
  • Butură, V. (1979) Enciclopedie de Etnobotanica Romaneasca [Encyclopedia of Romanian ethnobotany]. Stiintifica si Enciclopedica, Bucharest, pp. 8283.

    • Search Google Scholar
    • Export Citation
  • Chow, L. D., Hwang, S. M. (1975) Aristolochia fangchi: A new species of Aristolochia Linn. [J]. Acta Phytotax. Sin. 13, 108110.

  • Camporese, A., Balick, M. J., Arvigo, R., Esposito, R. G., Morsellino, N., De Simone, F., Tubaro, A. (2003) Screening of anti-bacterial activity of medicinal plants from Belize (Central America). J. Ethnopharmacol. 87(1), 103107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clinical and Laboratory Standards Institute [CLSI]. (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, CLSI document M07-A9, 9th ed. CLSI, Wayne, pp. 1213.

    • Search Google Scholar
    • Export Citation
  • Cosyns, J. P. (2003) Aristolochic acid and ‘Chinese herbs nephropathy’. Drug Safety 26(1), 3348.

  • Crivineanu, M., Durdun, C., Nicorescu, I. (2009) Antioxidant activity of some polyphenolic extracts obtained from plants with antitumoral potential on linoleic acid emulsion. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Food Sci. Technol. 66(1), 359365.

    • Search Google Scholar
    • Export Citation
  • Debelle, F. D., Vanherweghem, J. L., Nortier, J. L. (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 74(2), 158169.

  • Dénes, T., Tóth, M., Gyergyák, K., Lőrincz, P., Varga, E., Papp, N. (2014) Szemelvények Homoródalmás (Erdély) népi gyógynövényismeretéből [Ethnobotanical data in Homoródalmás Transylvania]. Bot. Közlem. 101, 227241.

    • Search Google Scholar
    • Export Citation
  • Farhana, Y., Mahin, H., Rafia, K., Mokaddes, S. (2016) Antibacterial and anthelmintic effects of ethanolic leaf extract of Aristolochia indica L. Biosci. Bioeng. Commun. 2, 6166.

    • Search Google Scholar
    • Export Citation
  • Gub, J. (1993) Adatok a Nagy-Homoród és a Nagy-Küküllő közötti terület népi növényismeretéhez [Ethnobotanical data of Nagy-Homoród and Nagy-Küküllő]. Népi Látóhatár 1–2, 95110.

    • Search Google Scholar
    • Export Citation
  • Gub, J. (2000) Népi növényismeret a Nagy-Homoród mentén “A Homoród füzes partján…” [Ethnobotanical data along the Nagy-Homoród]. Pro-Print Könyvkiadó, Csíkszereda, pp. 4755.

    • Search Google Scholar
    • Export Citation
  • Heinrich, M., Barnes, J., Gibbons, S., Williamson, E. M. (2004) Fundamentals of Pharmacognosy and Phytotherapy. Churchill Livingstone, Edinburgh, pp. 47.

    • Search Google Scholar
    • Export Citation
  • Heinrich, M., Wanke, S., Simmonds, M. S. J. (2009) Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2-A global assessment based on bibliographic sources. J. Ethnopharmacol. 125, 108144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwu, M. W., Duncan, A. R., Okunji, C. O. (1999) New antimicrobials of plant origin. In: Janick, J. (ed.) Perspectives on New Crops and New Uses. ASHS Press, Alexandria, pp. 457462.

    • Search Google Scholar
    • Export Citation
  • Jarič, S., Popović, Z., Macukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadzić, B., Mitrović, M., Pavlović, P. (2007) An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 111, 160175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keszeg, V. (1981) A mezőségi Detrehemtelep népi gyógyászata. Népismereti Dolgozatok [Ethnomedicinal data of Detrehemtelep in Mezősé]. Kriterion könyvkiadó, Bukarest, pp. 97117.

    • Search Google Scholar
    • Export Citation
  • Košťálová, D., Hrochová, V., Pronayová, N., Leško, J. (1991) Constituents of Aristolochia clematitis L. Chem. Pap. 45, 713716.

    • Search Google Scholar
    • Export Citation
  • Krumbiegel, G., Hallensleben, J., Mennicke, W. H., Rittmann, N., Roth, H. J. (1987) Studies on the metabolism of aristolochic acids I and II. Xenobiotica 17, 981991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, P. C., Li, Y. C., Wu, T. S. (2012) Chemical constituents and pharmacology of the Aristolochia (mădōu ling) species. J. Tradit. Complement. Med. 2, 249266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. H., Cho, S., Paik, H. D., Choi, C. W., Nam, K. T., Hwang, S. G., Kim, S. K. (2014) Investigation on antibacterial and antioxidant activities, phenolic and flavonoid contents of some Thai edible plants as an alternative for antibiotics. Asian-Australas J. Anim. Sci. 27, 14611468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leporatti, M. L., Ivancheva, S. (2003) Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 87, 123142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mengs, U., Lang, W., Poch, J. A. (1982) The carcinogenic action of aristolochic acid in rats. Arch. Toxicol. 51, 107119.

  • Moorthy, K., Punitha, T., Vinodhini, R., Mickymaray, S., Shonga, A., Tomass, Z., Thajuddin, N. (2015) Efficacy of different solvent extracts of Aristolochia krisagathra and Thottea ponmudiana for potential antimicrobial activity. J. Pharm. Res. 9(1), 3540.

    • Search Google Scholar
    • Export Citation
  • Murillo-Alvarez, J. I., Encarnación, D. R., Franzblau, S. G. (2001) Antimicrobial and cytotoxic activity of some medicinal plants from Baja California Sur (Mexico). Pharm. Biol. 39, 445449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mustafa, B., Hajdari, A., Krasniqi, F., Hoxa, E., Ademi, H., Quave, C. L., Pieroni, A. (2012) Medical ethnobotany of the Albanian Alps in Kosovo. J. Ethnobiol. Ethnomed. 8, 6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Péntek, J., Szabó, A. (1985) Ember és növényvilág – Kalotaszeg növényzete és népi növényismerete [People and plants – vegetation and rural botanical knowledge in Kalotaszeg]. Kriterion könyvkiadó, Bucharest, p. 154.

    • Search Google Scholar
    • Export Citation
  • Rastrelli, L., Capasso, A., Pizza, C., Tommasi, N. D. (1997) New protopine and benzyltetrahydroprotoberberine alkaloids from Aristolochia constricta and their activity on isolated guinea-pig ileum. J. Nat. Prod. 60, 10651069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, D. A., Alves, P. B., Costa, E. V., Franco, C. R. P., Nepel, A., Barison, A. (2014) Volatile constituents of Aristolochia trilobata L. (Aristolochiaceae): a rich source of sulcatyl acetate. QUIM NOVA 37, 977981.

    • Search Google Scholar
    • Export Citation
  • Shi, L. S., Kuo, P.-C., Tsai, Y.-L., Damu, A. G., Wu, T.-S. (2004) The alkaloids and other constituents from the root and stem of Aristolochia elegans. Bioorg, Med. Chem. 12, 439446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorenson, W. R., Sullivan, D. (2007) Determination of aristolochic acid I in botanicals and dietary supplements potentially contaminated with aristolochic acid I using LC-UV with confirmation by LC/MS: collaborative study. J. AOAC Int. 90, 925933.

    • Search Google Scholar
    • Export Citation
  • Szabó, L. Gy. (2002) Népi gyógynövényismeret Kalotaszegen és Gyimesvölgyében [Ethnobotanical data in Kalotaszeg and Gyimes Valley]. Turán 4, 3952.

    • Search Google Scholar
    • Export Citation
  • Trayee, S. D., Latha, R., Agastian, P. (2016) Evaluation of Aristolochia bracteolata Linn. for antimicrobial activity, α-glucosidase inhibition, and its phytochemical constituents. Asian J. Pharm. Clin. Res. 9(1), 102107.

    • Search Google Scholar
    • Export Citation
  • Tóth, M., Papp, N. (2014) Etnofarmakológiai adatok a Szatmár-megyei Túrterebesről [Ethnopharmacological data in Túrterebes, Szatmár County]. Művelődés-, Tudomány- és Orvostörténeti Folyóirat 5, 117129.

    • Search Google Scholar
    • Export Citation
  • Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A. (2010) Flora Europaea. Cambridge University Press, Cambridge, NY, Vol. 1, p. 88.

    • Search Google Scholar
    • Export Citation
  • Vaghasiya, Y., Chanda, S. (2007) Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. Turk. J. Biol. 31, 243248.

    • Search Google Scholar
    • Export Citation
  • Vanherweghem, J. L., Tielemans, C., Abramowicz, D., Depierreux, M., Vanhaelen-Fastre, R., Vanhaelen, M., Dratwa, M., Richard, C., Vandervelde, D., Verbeelen, D., Jadoul, M. (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341, 387391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T. S., Damu, A. G., Su, C. R., Kuo, P. C. (2004) Terpenoids of Aristolochia and their biological activities. Nat. Prod. Rep. 21, 5947624.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Abbouyi, A. E., Soukaina, E. M., Filali-Ansari, N., Khyari, S. E. (2016) Antioxidant effect of extract of rhizomes from Aristolochia clematitis. JCBPSC 6, 427437.

    • Search Google Scholar
    • Export Citation
  • Achenbach, H., Waibel, R., Zwanzger, M., Dominguez, X. A., Espinosa, B. G., Verde, S. J., Sánchez, V. H. (1992) 9-Methoxy- and 7, 9-dimethoxytariacuripyrone, natural nitro-compounds with a new basic skeleton from Aristolochia brevipes. J. Nat. Prod. 55, 918922.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Angalaparameswari, S., Mohamed Saleem, T. S., Alagusundaram, M., Ramkanth, S., Thiruvengadarajan, V. S., Gnanaprakash, K., Madhusudhana Chetty, C., Pratheesh, G. (2011) Anti-microbial activity of aristolochic acid from root of Aristolochia bracteata Retz. World Acad. Sci. Eng. Technol. 5, 9.

    • Search Google Scholar
    • Export Citation
  • Bartha, S. G., Quave, C. L., Balogh, L., Papp, N. (2015) Ethnoveterinary practices of Covasna County, Transylvania, Romania. J. Ethnobiol. Ethnomed. 11, 35.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Bahmani, M., Eftekhari, Z. (2013) An ethnoveterinary study of medicinal plants in treatment of diseases and syndromes of herd dog in southern regions of Ilam province, Iran. Comp. Clin. Path. 22, 403407.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Benmehdi, H., Behilil, A., Memmou, F., Amtouche, A. (2017) Free radical scavenging activity, kinetic behaviour and phytochemical constituents of Aristolochia clematitis L. roots. Arab. J. Chem. 10, S1402S1408.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Butnariu, M., Bostan, C., Samfira, I. (2012) Determination of mineral contents and antioxidant activity in some plants that contain allelochemicals of Banat region (Western Romania). Studia Universitatis “Vasile Goldiş”, Seria Ştiinţele Vieţii 22, 95100.

    • Search Google Scholar
    • Export Citation
  • Butură, V. (1979) Enciclopedie de Etnobotanica Romaneasca [Encyclopedia of Romanian ethnobotany]. Stiintifica si Enciclopedica, Bucharest, pp. 8283.

    • Search Google Scholar
    • Export Citation
  • Chow, L. D., Hwang, S. M. (1975) Aristolochia fangchi: A new species of Aristolochia Linn. [J]. Acta Phytotax. Sin. 13, 108110.

  • Camporese, A., Balick, M. J., Arvigo, R., Esposito, R. G., Morsellino, N., De Simone, F., Tubaro, A. (2003) Screening of anti-bacterial activity of medicinal plants from Belize (Central America). J. Ethnopharmacol. 87(1), 103107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Clinical and Laboratory Standards Institute [CLSI]. (2012) Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria that Grow Aerobically; Approved Standard, CLSI document M07-A9, 9th ed. CLSI, Wayne, pp. 1213.

    • Search Google Scholar
    • Export Citation
  • Cosyns, J. P. (2003) Aristolochic acid and ‘Chinese herbs nephropathy’. Drug Safety 26(1), 3348.

  • Crivineanu, M., Durdun, C., Nicorescu, I. (2009) Antioxidant activity of some polyphenolic extracts obtained from plants with antitumoral potential on linoleic acid emulsion. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca, Food Sci. Technol. 66(1), 359365.

    • Search Google Scholar
    • Export Citation
  • Debelle, F. D., Vanherweghem, J. L., Nortier, J. L. (2008) Aristolochic acid nephropathy: a worldwide problem. Kidney Int. 74(2), 158169.

  • Dénes, T., Tóth, M., Gyergyák, K., Lőrincz, P., Varga, E., Papp, N. (2014) Szemelvények Homoródalmás (Erdély) népi gyógynövényismeretéből [Ethnobotanical data in Homoródalmás Transylvania]. Bot. Közlem. 101, 227241.

    • Search Google Scholar
    • Export Citation
  • Farhana, Y., Mahin, H., Rafia, K., Mokaddes, S. (2016) Antibacterial and anthelmintic effects of ethanolic leaf extract of Aristolochia indica L. Biosci. Bioeng. Commun. 2, 6166.

    • Search Google Scholar
    • Export Citation
  • Gub, J. (1993) Adatok a Nagy-Homoród és a Nagy-Küküllő közötti terület népi növényismeretéhez [Ethnobotanical data of Nagy-Homoród and Nagy-Küküllő]. Népi Látóhatár 1–2, 95110.

    • Search Google Scholar
    • Export Citation
  • Gub, J. (2000) Népi növényismeret a Nagy-Homoród mentén “A Homoród füzes partján…” [Ethnobotanical data along the Nagy-Homoród]. Pro-Print Könyvkiadó, Csíkszereda, pp. 4755.

    • Search Google Scholar
    • Export Citation
  • Heinrich, M., Barnes, J., Gibbons, S., Williamson, E. M. (2004) Fundamentals of Pharmacognosy and Phytotherapy. Churchill Livingstone, Edinburgh, pp. 47.

    • Search Google Scholar
    • Export Citation
  • Heinrich, M., Wanke, S., Simmonds, M. S. J. (2009) Local uses of Aristolochia species and content of nephrotoxic aristolochic acid 1 and 2-A global assessment based on bibliographic sources. J. Ethnopharmacol. 125, 108144.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Iwu, M. W., Duncan, A. R., Okunji, C. O. (1999) New antimicrobials of plant origin. In: Janick, J. (ed.) Perspectives on New Crops and New Uses. ASHS Press, Alexandria, pp. 457462.

    • Search Google Scholar
    • Export Citation
  • Jarič, S., Popović, Z., Macukanović-Jocić, M., Djurdjević, L., Mijatović, M., Karadzić, B., Mitrović, M., Pavlović, P. (2007) An ethnobotanical study on the usage of wild medicinal herbs from Kopaonik Mountain (Central Serbia). J. Ethnopharmacol. 111, 160175.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Keszeg, V. (1981) A mezőségi Detrehemtelep népi gyógyászata. Népismereti Dolgozatok [Ethnomedicinal data of Detrehemtelep in Mezősé]. Kriterion könyvkiadó, Bukarest, pp. 97117.

    • Search Google Scholar
    • Export Citation
  • Košťálová, D., Hrochová, V., Pronayová, N., Leško, J. (1991) Constituents of Aristolochia clematitis L. Chem. Pap. 45, 713716.

    • Search Google Scholar
    • Export Citation
  • Krumbiegel, G., Hallensleben, J., Mennicke, W. H., Rittmann, N., Roth, H. J. (1987) Studies on the metabolism of aristolochic acids I and II. Xenobiotica 17, 981991.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kuo, P. C., Li, Y. C., Wu, T. S. (2012) Chemical constituents and pharmacology of the Aristolochia (mădōu ling) species. J. Tradit. Complement. Med. 2, 249266.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Lee, J. H., Cho, S., Paik, H. D., Choi, C. W., Nam, K. T., Hwang, S. G., Kim, S. K. (2014) Investigation on antibacterial and antioxidant activities, phenolic and flavonoid contents of some Thai edible plants as an alternative for antibiotics. Asian-Australas J. Anim. Sci. 27, 14611468.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Leporatti, M. L., Ivancheva, S. (2003) Preliminary comparative analysis of medicinal plants used in the traditional medicine of Bulgaria and Italy. J. Ethnopharmacol. 87, 123142.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mengs, U., Lang, W., Poch, J. A. (1982) The carcinogenic action of aristolochic acid in rats. Arch. Toxicol. 51, 107119.

  • Moorthy, K., Punitha, T., Vinodhini, R., Mickymaray, S., Shonga, A., Tomass, Z., Thajuddin, N. (2015) Efficacy of different solvent extracts of Aristolochia krisagathra and Thottea ponmudiana for potential antimicrobial activity. J. Pharm. Res. 9(1), 3540.

    • Search Google Scholar
    • Export Citation
  • Murillo-Alvarez, J. I., Encarnación, D. R., Franzblau, S. G. (2001) Antimicrobial and cytotoxic activity of some medicinal plants from Baja California Sur (Mexico). Pharm. Biol. 39, 445449.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Mustafa, B., Hajdari, A., Krasniqi, F., Hoxa, E., Ademi, H., Quave, C. L., Pieroni, A. (2012) Medical ethnobotany of the Albanian Alps in Kosovo. J. Ethnobiol. Ethnomed. 8, 6.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Péntek, J., Szabó, A. (1985) Ember és növényvilág – Kalotaszeg növényzete és népi növényismerete [People and plants – vegetation and rural botanical knowledge in Kalotaszeg]. Kriterion könyvkiadó, Bucharest, p. 154.

    • Search Google Scholar
    • Export Citation
  • Rastrelli, L., Capasso, A., Pizza, C., Tommasi, N. D. (1997) New protopine and benzyltetrahydroprotoberberine alkaloids from Aristolochia constricta and their activity on isolated guinea-pig ileum. J. Nat. Prod. 60, 10651069.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Santos, D. A., Alves, P. B., Costa, E. V., Franco, C. R. P., Nepel, A., Barison, A. (2014) Volatile constituents of Aristolochia trilobata L. (Aristolochiaceae): a rich source of sulcatyl acetate. QUIM NOVA 37, 977981.

    • Search Google Scholar
    • Export Citation
  • Shi, L. S., Kuo, P.-C., Tsai, Y.-L., Damu, A. G., Wu, T.-S. (2004) The alkaloids and other constituents from the root and stem of Aristolochia elegans. Bioorg, Med. Chem. 12, 439446.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Sorenson, W. R., Sullivan, D. (2007) Determination of aristolochic acid I in botanicals and dietary supplements potentially contaminated with aristolochic acid I using LC-UV with confirmation by LC/MS: collaborative study. J. AOAC Int. 90, 925933.

    • Search Google Scholar
    • Export Citation
  • Szabó, L. Gy. (2002) Népi gyógynövényismeret Kalotaszegen és Gyimesvölgyében [Ethnobotanical data in Kalotaszeg and Gyimes Valley]. Turán 4, 3952.

    • Search Google Scholar
    • Export Citation
  • Trayee, S. D., Latha, R., Agastian, P. (2016) Evaluation of Aristolochia bracteolata Linn. for antimicrobial activity, α-glucosidase inhibition, and its phytochemical constituents. Asian J. Pharm. Clin. Res. 9(1), 102107.

    • Search Google Scholar
    • Export Citation
  • Tóth, M., Papp, N. (2014) Etnofarmakológiai adatok a Szatmár-megyei Túrterebesről [Ethnopharmacological data in Túrterebes, Szatmár County]. Művelődés-, Tudomány- és Orvostörténeti Folyóirat 5, 117129.

    • Search Google Scholar
    • Export Citation
  • Tutin, T. G., Burges, N. A., Chater, A. O., Edmondson, J. R., Heywood, V. H., Moore, D. M., Valentine, D. H., Walters, S. M., Webb, D. A. (2010) Flora Europaea. Cambridge University Press, Cambridge, NY, Vol. 1, p. 88.

    • Search Google Scholar
    • Export Citation
  • Vaghasiya, Y., Chanda, S. (2007) Screening of methanol and acetone extracts of fourteen Indian medicinal plants for antimicrobial activity. Turk. J. Biol. 31, 243248.

    • Search Google Scholar
    • Export Citation
  • Vanherweghem, J. L., Tielemans, C., Abramowicz, D., Depierreux, M., Vanhaelen-Fastre, R., Vanhaelen, M., Dratwa, M., Richard, C., Vandervelde, D., Verbeelen, D., Jadoul, M. (1993) Rapidly progressive interstitial renal fibrosis in young women: association with slimming regimen including Chinese herbs. Lancet 341, 387391.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wu, T. S., Damu, A. G., Su, C. R., Kuo, P. C. (2004) Terpenoids of Aristolochia and their biological activities. Nat. Prod. Rep. 21, 5947624.

Acta Biologica Hungarica at Indexing/Ranking Services:

  • Impact Factor (2018): 0.679
  • Environmental Science (miscellaneous) SJR Quartile Score (2018): Q3
  • Biochemistry, Genetics and Molecular Biology (miscellaneous) SJR Quartile Score (2018): Q3
  • Scimago Journal Rank (2018): 0.261
  • SJR Hirsch-Index (2018): 25

Language: English

Founded in 1950
Siize: A4
Publication: One volume of four issues annually
Publication Programme: 2020. Vol. 71.
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts/li>
  • Current Abstracts
  • Current Contents: Agriculture
  • Biology and Environmental Sciences
  • Elsevier BIOBASE
  • Global Health
  • Index Madicus
  • Index Veterinarius
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services
  • Zoological Abstracts

 

Subscribers can access the electronic version of every printed article.

Senior Editors

Editor-in-Chief: Miklósi, Ádám

Managing Editor: Molnár, Csaba

Editorial Board

Maász, Gábor - Hungarian Academy of Sciences, Centre for Ecological Research
Barina, Zoltán - Hungarian Natural History Museum, Department of Botany
Pongrácz, Péter - Eötvös Loránd University, Department of Ethology
Gábriel, Róbert - University of Pécs, Szentágothai Research Centre
Vágvölgyi, Csaba - University of Szeged, Department of Microbiology
Hideg, Éva - University of Pécs, Department of Plant Biology
Solti, Ádám - Eötvös Loránd University, Department of Plan Physiology and Molecular Plant Biology
Erős, Tibor - Hungarian Academy of Sciences, Centre for Ecological Research
Székely, Tamás - University of Bath, University of Debrecen
Dobolyi, Árpád - Eötvös Loránd University, Department of Neurobiology and Physiology
Tamás, Andrea - University of Pécs, Department of Anatomy
Kovács, Tibor - Eötvös Loránd University, Department of Genetics
Serfőző, Zoltán - Hungarian Academy of Sciences, Balaton Limnological Institute
Bede-Fazekas, Ákos - Hungarian Academy of Sciences, Centre for Ecological Research
Bugyi, Beáta - University of Pécs, Department of Biophysics
Fugazza, Claudia - Eötvös Loránd University, Department of Ethology
Chmura, Damjan - University of Bielsko-Biala, Institute of Environmental Protection and Engineering
Neugart, Susanne - Leibniz Institute of Vegetable and Ornamental Crops
Contardo-Jara, Valeska - Technical University of Berlin, Institute of Ecology

The submission template is available as an MS WORD docx.

Please, download the file from HERE