View More View Less
  • 1 State Research Institute, Centre for Innovative Medicine, Lithuania
  • 2 Centre for Communicable Diseases and AIDS, Lithuania
  • 3 National Food and Veterinary Risk Assessment Institute, Lithuania
  • 4 Vilnius University Life Sciences Center, Institute of Biochemistry, Proteomics Center, Lithuania
  • 5 Mykolo Romerio University, Lithuania
  • 6 Centre for Communicable Diseases and AIDS, Lithuania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

The aim of this study was to determine the effect of mycobacterial proteins on mycobacterial biofilm formation and growth processes. We separated growth-affecting proteins (GEPs) from wild type of Mycobacterium bovis and ATCC strain of Mycobacterium avium subsp. avium. Our results showed that these mycobacteria-secreted GEPs are involved in biofilm formation, growth stimulatory, and inhibitory processes. Our findings suggest that GEP stimulated M. avium subsp. avium growth in vitro. Stimulation process was observed in mycobacteria affected with GEP extracted from M. avium subsp. avium. We found that both GEPs inhibited the growth of the M. bovis. Optical density measurement and visual analysis confirm that GEP plays an important role in biofilm formation process. Most of M. bovis GEP are associated with the type VII secretion and general secretion pathways. Our results contribute to a better understanding of the mechanisms underlying mycobacterial biofilm formation and growth-affecting processes and better characterization of mycobacterial proteins and their functions. It is noteworthy that this finding represents the first demonstration of GEP-mediated growth effects on a solid and liquid medium.

  • 1.

    Li, Y. H., Tian, X.: Quorum sensing and bacterial social interactions in biofilms. Sensors 12, 25192538 (2012).

  • 2.

    Waters, C. M., Bassler, B. L.: Quorum sensing: Cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21, 319346 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 3.

    Sharma, I. M., Petchiappan, A., Chatterji, D.: Quorum sensing and biofilm formation in mycobacteria: Role of C-di-GMP and methods to study this second messenger. IUBMB Life 66, 823834 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 4.

    Chen, J., Xie, J.: Role and regulation of bacterial LuxR-like regulators. J Cell Biochem 112, 26942702 (2011).

  • 5.

    Santos, C. L., Correia-Neves, M., Moradas-Ferreira, P. A., Mendes, M. V.: A walk into the LuxR regulators of actinobacteria: Phylogenomic distribution and functional diversity. PLoS One 7, 46758 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Polkade, A. V., Mantri, S. S., Patwekar, U. J., Jangid, K.: Quorum sensing: An under-explored phenomenon in the phylum Actinobacteria. Front Microbiol 7, 131 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Ojha, A. K., Baughn, A. D., Sambandan, D., Hsu, T., Trivelli, X., Guerardel, Y., Alahari, A., Kremer, L., Jacobs, W. R., Jr., Hatfull, G. F.: Growth of Mycobacterium tuberculosis biofilms containing free mycolic acids and harbouring drug-tolerant bacteria. Mol Microbiol 69, 164174 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Hans-Curt, F., Wingender, J.: The biofilm matrix. Nat Rev Microbiol 8, 623633 (2010).

  • 9.

    Trivedi, A., Mavi, P. S., Bhatt, D., Kumar, A.: Thiol reductive stress induces cellulose-anchored biofilm formation in Mycobacterium tuberculosis. Nat Commun 7, 11392 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Fong, J. N. C., Yildiz, F. H.: Biofilm matrix proteins. Microbiol Spectr 3, 10 (2015).

  • 11.

    Wisniewski, J. R., Zougman, A., Nagaraj, N., Mann M. : Universal sample preparation method for proteome analysis. Nat Methods 6, 359362 (2009).

  • 12.

    Lounatmaa, K., Brander, E.: Immunoelectron microscopic localization of 22 kDa protein antigen in the surface layer of Mycobacterium bovis BCG strains. In Lounatmaa, K., Brander, E. (eds): Proceedings of the XIIth International Congress for Electron Microscopy. San Francisco Press Inc., San Francisco, 1990, pp. 894895.

    • Search Google Scholar
    • Export Citation
  • 13.

    Abou-Zeid, C., Harboe, M., Rook, G. A.: Characterization of the secreted antigens of Mycobacterium bovis BCG: Comparison of the 46-kilodalton dimeric protein with proteins MPB64 and MPB70. Infect Immun 55, 32133214 (1987).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Wiker, H. G., Harboe, M., Nagai, S.: A localization index for distinction between extracellular and intracellular antigens of Mycobacterium tuberculosis. J Gen Microbiol 137, 875884 (1991).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Wiker, H. G.: MPB70 and MPB83 – Major antigens of Mycobacterium bovis. Scand J Immunol 69, 492499 (2009).

  • 16.

    Jungnickel, B., Rapoport, T., Hartmann, E.: Protein translocation: Common themes from bacteria to man. FEBS Lett 6, 7377 (1994).

  • 17.

    Malen, H., Berven, F. S., Softeland, T., Arntzenn, M. O., D’santos, C. S., De Souza, G. A., Wiker, H. G.: Membrane and membrane-associated proteins in Triton X-114 extracts of Mycobacterium bovis BCG identified using a combination of gel-based and gel-free fractionation strategies. Proteomics 8, 18591870 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Harboe, M., Wiker, H. G., Ulvund, G., Lund-Pedersen, B., Andersen, A. B., Hewinson, R. G., Nagai, S.: MPB70 and MPB83 as indicators of protein localization in mycobacterial cells. Infect Immun 66, 289296 (1998).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Harboe, M., Nagai, S., Patarroyo, M. E., Torres, M. L., Ramirez, C., Cruz, N.: Properties of proteins MPB64, MPB70, and MPB80 of Mycobacterium bovis BCG. Infect Immun 52, 293302 (1986).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Yamaguchi, R., Matsuo, K., Yamazaki, A., Abe, C., Nagai, S., Terasaka, K., Yamada, T.: Cloning and characterization of the gene for immunogenic protein MPB64 of Mycobacterium bovis BCG. Infect Immun 57, 283288 (1989).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Gu, S., Chen, J., Dobos, K. M., Bradbury, E. M., Belisle, J. T., Chen, X.: Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteom 2, 12841296 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    Raman, S., Puyang, X., Cheng, T. Y., Young, D. C., Moody, D. B., Husson, R. N.: Mycobacterium tuberculosis SigM positively regulates Esx secreted protein and nonribosomal peptide synthetase genes and down regulates virulence-associated surface lipid synthesis. J Bacteriol 24, 84608468 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 23.

    Agarwal, N., Woolwine, S. C., Tyagi, S., Bishai, W. R.: Characterization of the Mycobacterium tuberculosis sigma factor SigM by assessment of virulence and identification of SigM-dependent genes. Infect Immun 1, 452461 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Abdallah, A. M., Gey van Pittius, N. C., Champion, P. A., Cox, J., Luirink, J., Vandenbroucke-Grauls, C. M., Appelmelk, B. J., Bitter, W.: Type VII secretion – Mycobacteria show the way. Nat Rev Microbiol 5, 883891 (2007).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 25.

    Houben, N. G., Korotkov, K. V., Bitter, W.: Take five – Type VII secretion systems of mycobacteria. Biochim Biophys Acta 8, 17071716 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Mazandu, G. K., Mulder, N. J.: Function prediction and analysis of Mycobacterium tuberculosis hypothetical proteins. Int J Mol Sci 13, 72837302 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Fishbein, S., van Wyk, N., Warren, R. M., Sampson, S. L.: Phylogeny to function: PE/PPE protein evolution and impact on Mycobacterium tuberculosis pathogenicity. Mol Microbiol 5, 901916 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 28.

    de Souza, G. A., Leversen, N. A., Malen, H., Wiker, H. G.: Bacterial proteins with cleaved or uncleaved signal peptides of the general secretory pathway. J Proteomics 2, 502510 (2011).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Chen, J. M., Zhang, M., Rybniker, J., Basterra, L., Dhar, N., Tischler, A. D., Pojer, F., Cole, S. T.: Phenotypic profiling of Mycobacterium tuberculosis EspA point-mutants reveals blockage of ESAT-6 and CFP-10 secretion in vitro does not always correlate with attenuation of virulence. J Bacteriol 24, 54215430 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Majlessi, L., Brodin, P., Brosch, R., Rojas, M. J., Khun, H., Huerre, M., Cole, S. T., Leclerc, C.: Influence of ESAT-6 secretion system 1 (RD1) of Mycobacterium tuberculosis on the interaction between mycobacteria and the host immune system. J Immunol 174, 35703579 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Stanley, S. A., Raghavan, S., Hwang, W. W., Cox, J. S.: Acute infection and macrophage subversion by Mycobacterium tuberculosis require a specialized secretion system. Proc Natl Acad Sci U S A 22, 1300113006 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Lai, E. M., Nair, U., Phadke, N. D., Maddock, J. R.: Proteomic screening and identification of differentially distributed membrane proteins in Escherichia coli. Mol Microbiol 52, 10291044 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 33.

    Sassetti, C. M., Boyd, D. H., Rubin, E. J.: Genes required for mycobacterial growth defined by high density mutagenesis. Mol Microbiol 48, 7784 (2003).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    Lagrost, L., Desrumaux, C., Masson, D., Deckert, V., Gambert, P.: Structure and function of the plasma phospholipid transfer protein. Curr Opin Lipidol 9, 203209 (1998).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 35.

    Robinson, A., Causer, R. J., Dixon, N. E.: Architecture and conservation of the bacterial DNA replication machinery, an underexploited drug target. Curr Drug Targets 13, 352372 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 36.

    Matson, S. W., Kaiser-Rogers, K. A.: DNA helicases. Annu Rev Biochem 59, 289330 (1990).

  • 37.

    Tuteja, N., Singh, M. B., Misra, M. K., Bhalla, P. L., Tuteja, R.: Molecular mechanisms of DNA damage and repair: Progress in plants. Crit Rev Biochem Mol Biol 36, 337397 (2001).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 38.

    Purwantini, E., Daniels, L.: Purification of a novel coenzyme F420-dependent glucose-6-phosphate dehydrogenase from Mycobacterium smegmatis. J Bacteriol 10, 28612866 (1996).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 39.

    Hasan, M. R., Rahman, M., Jaques, S., Purwantini, E., Daniels, L.: Glucose 6-phosphate accumulation in Mycobacteria: Implications for a novel F420-dependent anti-oxidant defense system. J Biol Chem 25, 1913519144 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 40.

    Solomon, P. S., Shaw, A. L., Lane, I., Hanson, G. R., Palmer, T., McEwanl, A. G.: Characterization of a molybdenum cofactor biosynthetic gene cluster in Rhodobacter capsulatus which is specific for the biogenesis of dimethylsulfoxide reductase. Microbiology 142, 14211429 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 41.

    Masse, E., Gottesman, S.: A small RNA regulates the expression of genes involved in iron metabolism in Escherichia coli. Proc Natl Acad Sci U S A 99, 46204625 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 42.

    Sharma, D., Bisht, D.: Role of bacterioferritin & ferritin in M. tuberculosis pathogenesis and drug resistance: A future perspective by interactomic approach. Front Cell Infect Microbiol 7, 15 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 43.

    Hameed, S., Pal, R., Fatima, Z.: Iron acquisition mechanisms: Promising target against Mycobacterium tuberculosis. Open Microbiol J 9, 9197 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 44.

    Bennett, J. W.: From molecular genetics and secondary metabolism to molecular metabolites and secondary genetics. Can J Botany 73, 917924 (1995).

  • 45.

    Bode, H. B., Bethe, B., Höfs, R., Zeeck, A.: Big effects from small changes: Possible ways to explore nature’s chemical diversity. Chembiochem 3, 619627 (2002).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 46.

    Staunton, J., Weissman, K. J.: Polyketide biosynthesis: A millennium review. Nat Prod Rep 18, 380416 (2001).

  • 47.

    Adusumilli, S., Mve-Obiang, A., Sparer, T., Meyers, W., Hayman, J., Small, P. L.: Mycobacterium ulcerans toxic macrolide, mycolactone modulates the host immune response and cellular location of M. ulcerans in vitro and in vivo. Cell Microbiol 7, 12951304 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 48.

    Aslund, F., Beckwith, J.: The thioredoxin superfamily: Redundancy, specificity, and gray-area genomics. J Bacteriol 181, 13751379 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 49.

    Zhang, Z., Hillas, P. J., Ortiz de Montellano, P. R.: Reduction of peroxides and dinitrobenzenes by Mycobacterium tuberculosis thioredoxin and thioredoxin reductase. Arch Biochem Biophys 363, 1926 (1999).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 50.

    Jaeger, T., Budde, H., Flohe, L., Menge, U., Singh, M., Trujillo, M., Radi, R.: Multiple thioredoxin-mediated routes to detoxify hydroperoxides in Mycobacterium tuberculosis. Arch Biochem Biophys 423, 182191 (2004).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 51.

    Negrea, A., Bjur, E., Puiac, S., Ygberg, S. E., Åslund, F., Rhen, M.: Thioredoxin 1 participates in the activity of the Salmonella enterica serovar typhimurium pathogenicity island 2 Type III secretion system. J Bacteriol 191, 69186927 (2009).

    • Crossref
    • Search Google Scholar
    • Export Citation