View More View Less
  • 1 Czech University of Life Sciences Prague, Czech Republic
  • 2 Czech University of Life Sciences Prague, Czech Republic
  • 3 Institute of Experimental Botany AS CR, Czech Republic
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $784.00

Staphylococcus aureus is a major human pathogen that is responsible for both hospital- and community-acquired infections. Stilbenes are polyphenol compounds of plant origin known to possess a variety of pharmacological properties, such as antibacterial, antiviral, and antifungal effects. This study reports the in vitro growth-inhibitory potential of eight naturally occurring stilbenes against six standard strains and two clinical isolates of S. aureus, using a broth microdilution method, and expressing the results as minimum inhibitory concentrations (MICs). Pterostilbene (MICs = 32–128 μg/ml), piceatannol (MICs = 64–256 μg/ml), and pinostilbene (MICs = 128 μg/ml) are among the active compounds that possess the strongest activity against all microorganisms tested, followed by 3′-hydroxypterostilbene, isorhapontigenin, oxyresveratrol, and rhapontigenin with MICs 128–256 μg/ml. Resveratrol (MIC = 256 μg/ml) exhibited only weak inhibitory effect. Furthermore, structure–activity relationships were studied. Hydroxyl groups at ortho-position (B-3′ and -4′) played crucial roles for the inhibitory effect of hydroxystilbene piceatannol. Compounds with methoxy groups at ring A (3′-hydroxypterostilbene, pinostilbene, and pterostilbene) produced stronger effect against S. aureus than their analogues (isorhapontigenin and rhapontigenin) with methoxy groups at ring B. These findings provide arguments for further investigation of stilbenes as prospective leading structures for development of novel antistaphylococcal agents for topical treatment of skin infections.

  • 1.

    Lin, J., Lin, D., Xu, P., Zhang, T., Ou, Q., Bai, C., Yao, Z.: Non-hospital environment contamination with Staphylococcus aureus and methicillin-resistant Staphylococcus aureus: Proportion meta-analysis and features of antibiotic resistance and molecular genetics. Environ Res 150, 528540 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 2.

    Smeltzer, M. S.: Staphylococcus aureus pathogenesis: The importance of reduced cytotoxicity. Trends Microbiol 24, 681682 (2016).

  • 3.

    Foster, T. J.: Staphylococcus aureus. J Clin Invest 114, 16931696 (2004).

  • 4.

    Iwatsuki, K., Yamasaki, O., Morizane, S., Oono, T.: Staphylococcal cutaneous infections: Invasion, evasion and aggression. J Dermatol Sci 42, 203214 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 5.

    Oyama, K., Kawada-Matsuo, M., Oogai, Y., Hayashi, T., Nakamura, N., Komatsuzawa, H.: Antibacterial effects of glycyrrhetinic acid and its derivatives on Staphylococcus aureus. PLoS One 11, 117 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 6.

    Kurokawa, K., Takahashi, K., Lee, B. L.: The staphylococcal surface-glycopolymer wall teichoic acid (WTA) is crucial for complement activation and immunological defense against Staphylococcus aureus infection. Immunobiology 221, 10911101 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 7.

    Silva, F., Nerín, C., Domingues, F. C.: Stilbene phytoallexins inclusion complexes: A natural-based strategy to control foodborne pathogen Campylobacter. Food Control 54, 6673 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 8.

    Basri, D. F., Xian, L. W., Abdul Shukor, N. I., Latip, J.: Bacteriostatic antimicrobial combination: Antagonistic interaction between epsilon-viniferin and vancomycin against methicillin-resistant Staphylococcus aureus. Biomed Res Int 2014, 461756 (2014).

    • Search Google Scholar
    • Export Citation
  • 9.

    Sirerol, J. A., Rodríguez, M. L., Mena, S., Asensi, M. A., Estrela, J. M., Ortega, A. L.: Role of natural stilbenes in the prevention of cancer. Oxid Med Cell Longev 2016, 3128951 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 10.

    Peng, S. C., Cheng, C. Y., Sheu, F., Su, C. H.: The antimicrobial activity of heyneanol A extracted from the root of Taiwanese wild grape. J Appl Microbiol 105, 485491 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 11.

    Kumar, S., Siji, J., Nambisan, B., Mohandas, C.: Activity and synergistic interactions of stilbenes and antibiotic combinations against bacteria in vitro. World J Microbiol Biotechnol 28, 31433150 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 12.

    Yim, N. H., Ha, D. T., Trung, T. N., Kim, J. P., Lee, S. M., Na, M. K., Jung, H. J., Kim, H. S., Kim, Y. H., Bae, K. H.: The antimicrobial activity of compounds from the leaf and stem of Vitis amurensis against two oral pathogens. Bioorganic Med Chem Lett 20, 11651168 (2010).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 13.

    Ferreira, S., Domingues, F.: The antimicrobial action of resveratrol against Listeria monocytogenes in food-based models and its antibiofilm properties. J Sci Food Agric 96, 45314535 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 14.

    Pastorkova, E., Zakova, T., Landa, P., Novakova, J., Vadlejch, J., Kokoska, L.: Growth inhibitory effect of grape phenolics against wine spoilage yeasts and acetic acid bacteria. Int J Food Microbiol 161, 209213 (2013).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 15.

    Kabir, M. S., Engelbrecht, K., Polanowski, R., Krueger, S. M., Ignasiak, R., Rott, M., Schwan, W. R., Stemper, M. E., Reed, K. D., Sherman, D., Cooka, J. M., Monteb, A.: New classes of Gram-positive selective antibacterials: Inhibitors of MRSA and surrogates of the causative agents of anthrax and tuberculosis. Bioorganic Med Chem Lett 18, 57455749 (2008).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 16.

    Ishak, S. F., Ghazali, A. R., Zin, N. M., Basri, D. F.: Pterostilbene enhanced anti-methicillin resistant Staphylococcus aureus (MRSA) activity of oxacillin. Am J Infect Dis 12, 110 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 17.

    Moran, A., Gutierrez, S., Martinez-Blanco, H., Ferrero, M. A., Monteagudo-Mera, A., Rodriguez-Aparicio, L. B.: Non-toxic plant metabolites regulate Staphylococcus viability and biofilm formation: A natural therapeutic strategy useful in the treatment and prevention of skin infections. Biofouling 30, 11751182 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 18.

    Joung, D. K., Mun, S. H., Choi, S. H., Kang, O. H., Kim, S. B., Lee, Y. S., Zhou, T., Kong, R., Choi, J. G., Shin, D. W., Kim, Y. C., Lee, D. S., Kwon, D. Y.: Antibacterial activity of oxyresveratrol against methicillin-resistant Staphylococcus aureus and its mechanism. Exp Ther Med 12, 15791584 (2016).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 19.

    Xie, P., Huang, L., Zhang, C., Zhang, Y.: Phenolic compositions, and antioxidant performance of olive leaf and fruit (Olea europaea L.) extracts and their structure-activity relationships. J Funct Foods 16, 460471 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 20.

    Chen, Y., Hu, F., Gao, Y., Jia, S., Ji, N., Hua, E.: Design, synthesis, and evaluation of methoxylated resveratrol derivatives as potential antitumor agents. Res Chem Intermed 41, 27252738 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 21.

    Ferrer, P., Asensi, M., Segarra, R., Ortega, A., Benlloch, M., Obrador, E., Varea, M. T., Asensio, G., Jordá, L., Estrela, J. M.: Association between pterostilbene and quercetin inhibits metastatic activity of B16 Melanoma. Neoplasia 7, 3747 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 22.

    European committee for antimicrobial susceptibility testing (EUCAST): Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9, ixxv (2003).

    • Search Google Scholar
    • Export Citation
  • 23.

    Rondevaldova, J., Hummelova, J., Tauchen, J., Kokoska, L.: In vitro antistaphylococcal synergistic affect of isoflavone metabolite demethyltexasin with amoxicillin and oxacillin. Microb Drug Resist 24, 2429 (2018).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 24.

    Clinical and Laboratory Standards Institute (CLSI): Methods for Dilution Antimicrobial Susceptibility Tests for bacteria that grow aerobically; 8th ed. Approved Standard M07-A8. CLSI, Wayne, PA, 2009.

    • Export Citation
  • 25.

    Cos, P., Vlietinck, A. J., Berghe, D. V., Maes, L.: Anti-infective potential of natural products: How to develop a stronger in vitro “proof-of-concept”. J Ethnopharmacol 106, 290302 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 26.

    Su, Y., Ma, L., Wen, Y., Wang, H., Zhang, S.: Studies of the in vitro antibacterial activities of several polyphenols against clinical isolates of methicillin-resistant Staphylococcus aureus. Molecules 19, 1263012639 (2014).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 27.

    Evans, S. M., Cowan, M. M.: Plant products as antimicrobial agents. Cosmet Sci Technol Ser 31, 205232 (2006).

  • 28.

    Murias, M., Jäger, W., Handler, N., Erker, T., Horvath, Z., Szekeres, T., Nohl, H., Gille, L.: Antioxidant, prooxidant and cytotoxic activity of hydroxylated resveratrol analogues: Structure-activity relationship. Biochem Pharmacol 69, 903912 (2005).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 29.

    Cai, Y.-Z., Sun, M., Xing, J., Luo, Q., Corke, H.: Structure-radical scavenging activity relationships of phenolic compounds from traditional Chinese medicinal plants. Life Sci 78, 28722888 (2006).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 30.

    Tang, F., Xie, Y., Cao, H., Yang, H., Chen, X., Xiao, J.: Fetal bovine serum influences the stability and bioactivity of resveratrol analogues: A polyphenol-protein interaction approach. Food Chem 219, 321328 (2017).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 31.

    Hummelova, J., Rondevaldova, J., Balastikova, A., Lapcik, O., Kokoska, L.: The relationship between structure and in vitro antibacterial activity of selected isoflavones and their metabolites with special focus on antistaphylococcal effect of demethyltexasin. Lett Appl Microbiol 60, 242247 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 32.

    Chong, J., Poutaraud, A., Hugueney, P.: Metabolism and roles of stilbenes in plants. Plant Sci 177, 143155 (2009).

  • 33.

    Shi, Y. W., Wang, C. P., Liu, L., Liu, Y. L., Wang, X., Hong, Y., Li, Z., Kong, L. D.: Antihyperuricemic and nephroprotective effects of resveratrol and its analogues in hyperuricemic mice. Mol Nutr Food Res 56, 14331444 (2012).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • 34.

    McCormack, D., McFadden, D.: Pterostilbene and cancer: Current review. J Surg Res 173, e53e61 (2012).

  • 35.

    Wilson, M., Rimando, A., Wolkow, C.: Methoxylation enhances stilbene bioactivity in Caenorhabditis elegans. BMC Pharmacol 8, 15 (2008).

  • 36.

    Sirerol, J. A., Feddi, F., Mena, S., Rodriguez, M. L., Sirera, P., Aupí, M., Pérez, S., Asensi, M., Ortega, A., Estrela, J. M.: Free radical biology and medicine topical treatment with pterostilbene, a natural phytoalexin, effectively protects hairless mice against UVB radiation-induced skin damage and carcinogenesis. Free Radic Biol Med 85, 111 (2015).

    • Crossref
    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2020 0 13 3
Jun 2020 0 12 2
Jul 2020 11 4 1
Aug 2020 42 0 0
Sep 2020 28 0 0
Oct 2020 18 1 1
Nov 2020 0 0 0