View More View Less
  • 1 Financial Directorate OTP Factoring Mozsár u. 8 H-1066 Budapest Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $700.00

Discussion on methodological problems of corporate survival and solvency prediction is enjoying a renaissance in the era of financial and economic crisis. Within the framework of this article, the most frequently applied bankruptcy prediction methods are competed on a Hungarian corporate database. Model reliability is evaluated by Receiver Operating Characteristic (ROC) curve analysis. The article attempts to answer the question of whether the simultaneous application of data reduction and univariate splitting (or just one of them) improves model performance, and for which methods it is worth applying such transformations.

  • Agarwal, V. — Taffler, R. (2008): Comparing the Performance of Market-based and Accounting-based Bankruptcy Prediction Models. Journal of Banking & Finance 32: 1541–1551.

    Taffler R. , 'Comparing the Performance of Market-based and Accounting-based Bankruptcy Prediction Models ' (2008 ) 32 Journal of Banking & Finance : 1541 -1551.

    • Search Google Scholar
  • Altman, E. I. (1968): Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy. The Journal of Finance, 23: 589–609.

    Altman E. I. , 'Financial Ratios, Discriminant Analysis and the Prediction of Corporate Bankruptcy ' (1968 ) 23 The Journal of Finance : 589 -609.

    • Search Google Scholar
  • Chatfield, C. — Collins, A. J. (2000): Introduction to Multivariate Analysis. Boca Raton, FL: Chapman & Hall/CRC.

    Collins A. J. , '', in Introduction to Multivariate Analysis , (2000 ) -.

  • Engelman, B. — Hayden, E. — Tasche, D. (2003): Measuring the Discriminative Power of Rating Systems. Discussion Paper Series, No. 2. Frankfurt: Banking and Financing Supervision, Deutsche Bundesbank.

    Tasche D. , '', in Measuring the Discriminative Power of Rating Systems , (2003 ) -.

  • Frydman, H. — Altman, E. I. — Kao, D.L. (1985): Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress. The Journal of Finance, 40: 303–320.

    Kao D.L. , 'Introducing Recursive Partitioning for Financial Classification: The Case of Financial Distress ' (1985 ) 40 The Journal of Finance : 303 -320.

    • Search Google Scholar
  • Gáspár, T. — Nováky, E. (2002): Dilemmas for Renewal of Futures Methodology. Futures, 34: 365–379.

    Nováky E. , 'Dilemmas for Renewal of Futures Methodology ' (2002 ) 34 Futures : 365 -379.

  • Ghiassi, M. — Saidane, H. — Zimbra, D.K. (2005): A Dynamic Artificial Neural Network Model for Forecasting Time Series Events. International Journal of Forecasting, 21: 341–362.

    Zimbra D.K. , 'A Dynamic Artificial Neural Network Model for Forecasting Time Series Events ' (2005 ) 21 International Journal of Forecasting : 341 -362.

    • Search Google Scholar
  • Gurney, K. (1996): Neural Nets. Uxbridge: Department of Human Sciences, Brunel University.

    Gurney K. , '', in Neural Nets , (1996 ) -.

  • Han, J. — Kamber, M. (2006): Data Mining: Concepts and Techniques. New York: Morgan Kaufmann Publishers.

    Kamber M. , '', in Data Mining: Concepts and Techniques , (2006 ) -.

  • Hu, Y.C. — Ansell, J. (2007): Measuring Retail Company Performance Using Credit Scoring Techniques. European Journal of Operational Research, 183: 1596–1606.

    Ansell J. , 'Measuring Retail Company Performance Using Credit Scoring Techniques ' (2007 ) 183 European Journal of Operational Research : 1596 -1606.

    • Search Google Scholar
  • Huang, G. B. — Saratchandran, P. — Sundararajan, N. (2005): A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation. IEEE Transactions on Neural Networks, 16: 57–67.

    Sundararajan N. , 'A Generalized Growing and Pruning RBF (GGAP-RBF) Neural Network for Function Approximation ' (2005 ) 16 IEEE Transactions on Neural Networks : 57 -67.

    • Search Google Scholar
  • Kass, G. W. (1980): An Exploratory Technique for Investigating Large Quantities of Categorical Data. Journal of Applied Statistics, 29: 119–127.

    Kass G. W. , 'An Exploratory Technique for Investigating Large Quantities of Categorical Data ' (1980 ) 29 Journal of Applied Statistics : 119 -127.

    • Search Google Scholar
  • Kovács, E. (2006): Pénzügyi adatok statisztikai elemzése (Statistical Analysis of Financial Data). Budapest: Budapesti Corvinus Egyetem, Pénzügyi és Számviteli Intézet.

    Kovács E. , '', in Pénzügyi adatok statisztikai elemzése , (2006 ) -.

  • Krzanowski, W. J. (2000): Principles of Multivariate Analysis. A User’s Perspective. Oxford: Oxford University Press.

    Krzanowski W. J. , '', in Principles of Multivariate Analysis. A User’s Perspective , (2000 ) -.

  • Laitinen, T. — Kankaanpaa, M. (1999): Comparative Analysis of Failure Prediction Methods: The Finnish Case. European Accounting Review, 8: 67–92.

    Kankaanpaa M. , 'Comparative Analysis of Failure Prediction Methods: The Finnish Case ' (1999 ) 8 European Accounting Review : 67 -92.

    • Search Google Scholar
  • Medema, L. — Koning, R. H. — Lensink, E. (2009): A Practical Approach to Validating a PD Model. Journal of Banking & Finance, 33: 701–708.

    Lensink E. , 'A Practical Approach to Validating a PD Model ' (2009 ) 33 Journal of Banking & Finance : 701 -708.

    • Search Google Scholar
  • Odom, M. D. — Sharda, R. (1990): A Neural Network Model for Bankruptcy Prediction. In: Proceeding of the International Joint Conference on Neural Networks. San Diego, 17–21 June 1990, Volume II. Ann Arbor: IEEE Neural Networks Council, pp. 163–171.

    Sharda R. , '', in Proceeding of the International Joint Conference on Neural Networks. San Diego, 17–21 June 1990, Volume II , (1990 ) -.

  • Ohlson, J. (1980): Financial Ratios and the Probabilistic Prediction of Bankruptcy. Journal of Accounting Research, 18: 109–131.

    Ohlson J. , 'Financial Ratios and the Probabilistic Prediction of Bankruptcy ' (1980 ) 18 Journal of Accounting Research : 109 -131.

    • Search Google Scholar
  • Perez, M. (2006): Artificial Neural Networks and Bankruptcy Forecasting: a State of the Art. Neural Computing & Applications, 15: 154–163.

    Perez M. , 'Artificial Neural Networks and Bankruptcy Forecasting: a State of the Art ' (2006 ) 15 Neural Computing & Applications : 154 -163.

    • Search Google Scholar
  • Platt, H. D. — Platt, M. B. (1990): Development of a Class of Stable Predictive Variables: the Case of Bankruptcy Prediction. Journal of Business Finance and Accounting, 17: 31–44.

    Platt M. B. , 'Development of a Class of Stable Predictive Variables: the Case of Bankruptcy Prediction ' (1990 ) 17 Journal of Business Finance and Accounting : 31 -44.

    • Search Google Scholar
  • Stein, R. M. (2005): The Relationship between Default Prediction and Lending Profits: Integrating ROC Analysis and Loan Pricing. Journal of Banking & Finance, 29: 1213–1236.

    Stein R. M. , 'The Relationship between Default Prediction and Lending Profits: Integrating ROC Analysis and Loan Pricing ' (2005 ) 29 Journal of Banking & Finance : 1213 -1236.

    • Search Google Scholar
  • Virág, M. — Kristóf, T. (2005): Neural Networks in Bankruptcy Prediction — a Comparative Study on the Basis of the First Hungarian Bankruptcy Model. Acta Oeconomica, 55(4): 403–425.

    Kristóf T. , 'Neural Networks in Bankruptcy Prediction — a Comparative Study on the Basis of the First Hungarian Bankruptcy Model ' (2005 ) 55 Acta Oeconomica : 403 -425.

    • Search Google Scholar
  • Xu, X. — Chen, Y. — Haitao, Z. (2011): The Comparison of Enterprise Bankruptcy Forecasting Method. Journal of Applied Statistics, 38: 301–308.

    Haitao Z. , 'The Comparison of Enterprise Bankruptcy Forecasting Method ' (2011 ) 38 Journal of Applied Statistics : 301 -308.

    • Search Google Scholar
Submit Your Manuscript
 
The author instruction is available in PDF.
Please, download the file from HERE.

 

The description of the refereeing procedure is available in PDF.
Please, download the file from HERE.

 

 

Senior editors

Editor(s)-in-Chief: Prof. Dr. Mihályi, Péter

Editor(s): Ványai, Judit

Editorial Board

  • Ádám Török (Chairman) / University of Pannonia; Budapest University of Technology and Economics
  • Edina Berlinger / Corvinus University of Budapest, Department of Finance
  • Beáta Farkas / Faculty of Economics and Business Administration, University of Szeged
  • Péter Halmai / Budapest University of Technology and Economics; National University of Public Service
  • István Kónya / Institute of Economics Centre for Regional and Economic Studies, University of Pécs
  • János Köllő / Institute of Economics Centre for Regional and Economic Studies
  • István Magas / Corvinus University of Budapest, Department of World Economy; University of Physical Education, Department. of Sports and Decision Sciences
 

Advisory Board

  • Ǻslund, Anders, Institute of International Economics, Washington (USA)
  • Kolodko, Grzegorz, Kozminski University, Warsaw (Poland)
  • Mau, Vladimir, Academy of National Economy (Russia)
  • Messerlin, Patrick A, Groupe d’Economie Mondiale (France)
  • Saul Estrin, London School of Economics (UK)
  • Wagener, Hans-Jürgen, Europa Universität Viadrina (Germany)

Corvinus University of Budapest
Department of Economics
Fővám tér 8 Budapest, H-1093, Hungary

Indexing and Abstracting Services:

  • EconLit
  • Elsevier GEO Abstracts
  • GEOBASE
  • International Bibliographies IBZ and IBR
  • JEL
  • Referativnyi Zhurnal
  • RePEc
  • SCOPUS
  • Social Science Citation Index
  • Index Copernicus

 

2020  
Total Cites 275
WoS
Journal
Impact Factor
0,875
Rank by Economics 325/377 (Q4)
Impact Factor  
Impact Factor 0,534
without
Journal Self Cites
5 Year 0,500
Impact Factor
Journal  0,38
Citation Indicator  
Rank by Journal  Economics 347/549 (Q3)
Citation Indicator   
Citable 37
Items
Total 37
Articles
Total 0
Reviews
Scimago 13
H-index
Scimago 0,292
Journal Rank
Scimago Economics and Econometrics Q3
Quartile Score  
Scopus 225/166=1,4
Scite Score  
Scopus Economics and Econometrics 392/661 (Q3)
Scite Score Rank  
Scopus 0,668
SNIP  
Days from  289
submission  
to acceptance  
Days from  447
acceptance  
to publication  

2019  
Total Cites
WoS
212
Impact Factor 0,914
Impact Factor
without
Journal Self Cites
0,728
5 Year
Impact Factor
0,650
Immediacy
Index
0,156
Citable
Items
45
Total
Articles
45
Total
Reviews
0
Cited
Half-Life
3,9
Citing
Half-Life
9,5
Eigenfactor
Score
0,00015
Article Influence
Score
0,052
% Articles
in
Citable Items
100,00
Normalized
Eigenfactor
0,01891
Average
IF
Percentile
28,437
Scimago
H-index
12
Scimago
Journal Rank
0,439
Scopus
Scite Score
214/165=1,3
Scopus
Scite Score Rank
Economics and Econometrics 355/637 (Q3)
Scopus
SNIP
0,989

 

Acta Oeconomica
Publication Model Hybrid
Submission Fee none
Article Processing Charge 900 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 588 EUR / 732 USD
Print + online subscription: 688 EUR / 860 USD
Subscription fee 2022 Online subsscription: 600 EUR / 750 USD
Print + online subscription: 704 EUR / 880 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Oeconomica
Language English
Size B5
Year of
Foundation
1966
Publication
Programme
2021 Volume 71
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0001-6373 (Print)
ISSN 1588-2659 (Online)