View More View Less
  • 1 Institute of Ecology and Botany MTA Centre for Ecological Research, H-2163 Vácrátót, Alkotmány u. 2–4, Hungary
  • 2 Szent István University, H-2100 Gödöllő, Páter K. u. 1, Hungary
Open access

The terricolous species Cladonia foliacea (Cladoniaceae, lichenised Ascomycota) widely distributed in open, dry lowland steppe and rocky mountain grassland vegetation in Europe was chosen as a potential test organism for ecological experiments, since their thalli are producing cortical solar radiation-protective and UV screening pigment dibenzofuran usnic acid and medullary secondary substance depsidone fumarprotocetraric acid. Significant seasonal differences were found in the amounts of lichen secondary metabolites analysed by HPTLC and HPLC-PDA between summer and winter collected thalli in sandy grassland area in Hungary. The concentrations of usnic acid varied between 7.34 and 15.52 mg/g in summer collected samples and 13.90 and 21.61 mg/g in winter collected ones. A comparable amount (11.61±0.29 mg/g) was measured in pulverised samples. The concentrations of fumarprotocetraric acid varied between 0.60 and 3.01 mg/g in summer collected samples and 2.26 and 5.81 mg/g in winter collected thalli. A comparable amount (2.45±0.21 mg/g) was found in pulverised samples. The range of concentration values is comparable with data known from lichens. A higher amount of usnic acid is produced in winter probably to ensure sufficient protection also for summer. The fumarprotocetraric acid content of the medulla might contribute to the solar irradiation reflecting role of the pale lower surface lobes turning upwards in dry condition.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Anar, M., Orhan, F., Alpsoy, L., Gulluce, M., Asian, A. and Agar, G. (2013): The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. – Toxicol. Indust. Health 32 (4): 721729. https://doi.org/10.1177/0748233713504805

    • Search Google Scholar
    • Export Citation
  • Archer, A. W. (1981): Quantitative distribution of lichen products in Australian scyphose Cladonia species. – Lichenologist 13: 259263. https://doi.org/10.1017/s0024282981000340

    • Search Google Scholar
    • Export Citation
  • Armaleo, D., Zhang, Y. and Cheung, S. (2008): Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. – Mycologia 100 (4): 565576. https://doi.org/10.3852/07-162r

    • Search Google Scholar
    • Export Citation
  • Arup, U., Ekman, S., Lindblom, L. and Mattsson, J.-E. (1993): High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. – Lichenologist 25 (1): 6171. https://doi.org/10.1006/lich.1993.1018

    • Search Google Scholar
    • Export Citation
  • Asian, A., Güllüce, M., Sökmen, M., Adıgüzel, A., Şahin, F. and Özkan, H. (2006): Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Evernia divaricata, Evernia prunastri and Neofuscelia pulla. – Pharm. Biol. 44 (4): 247252. https://doi.org/10.1080/13880200600713808

    • Search Google Scholar
    • Export Citation
  • Asplund, J., Siegenthaler, A. and Gauslaa, Y. (2017): Simulated global warming increases usnic acid but reduces perlatolic acid in the mat-forming terricolous lichen Cladonia stellaris. – Lichenologist 49 (3): 269274. https://doi.org/10.1017/s0024282917000159

    • Search Google Scholar
    • Export Citation
  • BeGora, M. D. and Fahselt, D. (2001): Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. – The Bryologist 104 (1): 134140. https://doi.org/10.1639/0007-2745(2001)104[0134:uaaaci]2.0.co;2

    • Search Google Scholar
    • Export Citation
  • Bergamini, A., Scheidegger, C., Stofer, S. et al. (2005): Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. – Conservation Biol. 19 (4): 10511062. https://doi.org/10.1111/j.1523-1739.2005.00192.x-i1

    • Search Google Scholar
    • Export Citation
  • Bjerke, J. W., Elvebakk, A., Dominguez, E. and Dahlback, A. (2005): Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. – Phytochemistry 66: 337344. https://doi.org/10.1016/j.phytochem.2004.12.007

    • Search Google Scholar
    • Export Citation
  • Borhidi, A., Kevey, B. and Lendvai, G. (2012): Plant communities of Hungary.Akadémiai Kiadó, Budapest, 544 pp.

  • Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A. and Owen, J. G. (2018): Secondary metabolism in the lichen symbiosis. – Chem. Soc. Reviews 47 (5): 17301760. https://doi.org/10.1039/c7cs00431a

    • Search Google Scholar
    • Export Citation
  • Candotto Carniel, F., Pellegrini, E., Bove, F. and Crosera, M. (2017): Acetone washing for the removal of lichen substances affects membrane permeability. – Lichenologist 49(4): 387395. https://doi.org/10.1017/s0024282917000263

    • Search Google Scholar
    • Export Citation
  • Cocchietto, M., Skert, N., Nimis, P. L. and Sava, G. (2002): A review on usnic acid, an interesting natural compound. – Die Naturwissenschaften 89: 137146. https://doi.org/10.1007/s00114-002-0305-3

    • Search Google Scholar
    • Export Citation
  • Elix, J. A. (1996): Biochemistry and secondary metabolites. – In: Nash III, T. H. (ed.): Lichen biology, 1st ed. Cambridge University Press, Cambridge, pp. 155180.

    • Search Google Scholar
    • Export Citation
  • Emsen, B., Yildirim, E., Asian, A., Anar, M. and Ercifli, S. (2012): Insecticidal effect of the extracts of Cladonia foliacea (Huds.) Willd. and Flavoparmelia caperata (L.) Hale against adults of the grain weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). – Egypt. J. Biol. Pest Cont. 22 (2): 145149.

    • Search Google Scholar
    • Export Citation
  • Ertl, L. (1951): Über die Lichtverhältnisse in Laubflechten. – Planta 39 (3): 245270. https://doi.org/10.1007/bf01909397

  • Farkas, E., Biró, B., †Csintalan, Zs. and Veres, K. (2020): Acetone rinsing tolerance of the lichen species Cladonia foliacea is considerable. – Lichenologist, in prep.

    • Search Google Scholar
    • Export Citation
  • Feige, B., Lumbsch, H. T., Huneck, S. and Elix, J. A. (1993): Identification of lichen substances by standardized high-performance liquid chromatographic method. – J. Chromatogr. 646: 417427. https://doi.org/10.1016/0021-9673(93)83356-w

    • Search Google Scholar
    • Export Citation
  • Galloway, D. J. (1993): Global environmental change: lichens and chemistry. – In: Feige, G. B. and Lumbsch, H. T. (eds): Phytochemistry and chemotaxonomy of lichenized Ascomycetes. A Festschrift in honour of Siegfried Huneck. J. Cramer, Berlin, Stuttgart, Bibl. Lichenol. 53: 8795.

    • Search Google Scholar
    • Export Citation
  • Gauslaa, Y., Azharul, Alam Md., Lucas, P.-L., Chowdhury, D. P. and Solhaug, K. A. (2017): Fungal tissue per se is stronger as a UV-B screen than secondary fungal extrolites in Lobaria pulmonaria. – Fungal Ecol. 26: 109113. https://doi.org/10.1016/fune-co.2017.01.005

    • Search Google Scholar
    • Export Citation
  • Hauck, M. (2011): Eutrophication threatens the biochemical diversity in lichens. – Lichenologist 43: 147154. https://doi.org/10.1017/s0024282910000654

    • Search Google Scholar
    • Export Citation
  • Hauck, M., Willenbruch, K. and Leuschner, C. (2009): Lichen substances prevent lichens from nutrient deficiency. – J. Chem. Ecol. 35: 7173. https://doi.org/10.1007/s10886-008-9584-2

    • Search Google Scholar
    • Export Citation
  • Hillmann, J. and Grummann, V. (1957): Kryptogamenflora der Mark Brandenburg und angrenzender Gebiete. Band VIII: Flechten. – Gebrüder Borntraeger, Berlin-Nikolassee, 898 pp.

    • Search Google Scholar
    • Export Citation
  • Honegger, R. (1986): Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. – New Phytol. 103: 797808. https://doi.org/10.1111/j.1469-8137.1986.tb00854.x

    • Search Google Scholar
    • Export Citation
  • Honegger, R. (1997): Metabolic interactions at the mycobiont-photobiont interface in lichens. – In: Carroll, G. C. and Tudzynski, P. (eds): The Mycota V. Plant relationships. Springer, Berlin, Heidelberg, New York, pp. 209221.

    • Search Google Scholar
    • Export Citation
  • Honegger, R. (2012): The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. – In: Hock, B. (ed.): The Mycota IX. Fungal Associations. Springer, Berlin, Heidelberg, pp. 287339.

    • Search Google Scholar
    • Export Citation
  • Huneck, S. (1999): The significance of lichens and their metabolites. – Die Naturwissenschaften 86: 559570. https://doi.org/10.1007/s001140050676.

    • Search Google Scholar
    • Export Citation
  • Huneck, S. and Yoshimura, I. (1996): Identification of lichen substances.Springer Verlag, Berlin, Heidelberg, 493 pp.

  • Ji, X. and Khan, I. A. (2005): Quantitative determination of usnic acid in Usnea lichen and its products by reversed-phase liquid chromatography with photodiode array detector. – J. AOAC Int. 88 (5): 12651268.

    • Search Google Scholar
    • Export Citation
  • Kalapos, T. and Mázsa, K. (2001): Juniper shade enables terricolous lichens and mosses to maintain high photochemical efficiency in a semiarid temperate sand grassland. – Photosynthetica 39 (2): 263268. https://doi.org/10.1023/a:1013749108008

    • Search Google Scholar
    • Export Citation
  • Khadhri, A., Mendili, M., Araújo, M. E. M. and Seaward, M. R. D. (2019): Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii. – Symbiosis 79 (1): 2531. https://doi.org/10.1007/s13199-019-00630-6

    • Search Google Scholar
    • Export Citation
  • Koparal, A. T. (2015): Anti-angiogenic and antiproliferative properties of the lichen substances (-)-usnic acid and vulpinic acid. – Z. Naturforsch., Sect. C 70(56): 159164. https://doi.org/10.1515/znc-2014-4178

    • Search Google Scholar
    • Export Citation
  • Kosanić, M., Ristić, S., Stanojković, T., Manojlović, N. and Ranković, B. (2018): Extracts of five Cladonia lichens as sources of biologically active compounds. – Farmacia 66 (4): 644651. https://doi.org/10.31925/farmacia.2018.4.13.

    • Search Google Scholar
    • Export Citation
  • Lange, O. L., Schulze, E. D. and Koch, W. (1970): Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. – Flora 159: 3862. https://doi.org/10.1016/s0367-2530(17)31005-8

    • Search Google Scholar
    • Export Citation
  • Matteucci, E., Occhipinti, A., Piervittori, R., Maffei, M. E. and Favero-Longo, S. E. (2017): Morphological, secondary metabolite and ITS (rDNA) variability within usnic acid-containing lichen thalli of Xanthoparmelia explored at the local scale of rock out-crop in W-Alps. – Chemistry and Biodiversity 14 (6): e1600483. https://doi.org/10.1002/cbdv.201600483

    • Search Google Scholar
    • Export Citation
  • Mázsa, K. (1994): Field studies on CO2 fixation of Cladonia furcata and Cladonia convoluta. – Cryptogamic Bot. 4: 207211.

  • Mázsa, K., Mészáros, R. and Kalapos, T. (1998): Ecophysiological background of microhabitat preference by soil-living lichens in a sand grassland-forest mosaic; study plan and initial results. – Sauteria 9: 165171.

    • Search Google Scholar
    • Export Citation
  • Mázsa, K., Mészáros, R. and Kalapos, T. (1999): Ecophysiology of steppe mosses and lichens. – In: Kovács-Láng, E., Molnár, E., Kröel-Dulay, Gy. and Barabás, S. (eds): Long term ecological research in the Kiskunság, Hungary. Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, pp. 3738.

    • Search Google Scholar
    • Export Citation
  • McEvoy, M., Solhaug, K. A. & Gauslaa, Y. (2007) Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. – Symbiosis 43: 143150.

    • Search Google Scholar
    • Export Citation
  • Mitrović, T., Stamenković, S., Cvetković, V., Tošić, S., Stanković, M., Radojević, I., Stefanović, O., Čomić, L., Dačic, D., Ćurčić, M. and Marković, S. (2011): Antioxidant, antimicrobial and antiproliferative activities of five lichen species. – Int. J. Mol. Sci. 12 (8): 54285448. https://doi.org/10.3390/ijms12085428

    • Search Google Scholar
    • Export Citation
  • Mitrović, T. L., Stamenković, S. M., Cvetković, V. J., Radulović, N. S., Mladenović, M. Z., Stanković, M. S., Topuzović, M. D., Radojević, I. D., Stefanović, O. D., Vasić, S. M., Comić, L. R., Seklić, D. S., Obradović, A. D. and Marković, S. D. (2015): Contribution to the knowledge of the chemical composition and biological activity of the lichens Cladonia foliacea Huds. (Wild.) and Hypogymnia physodes (L.). – Oxidation Communications 38 (4A): 20162032.

    • Search Google Scholar
    • Export Citation
  • Molnár, K. and Farkas, E. (2010): Current results on biological activities of lichen secondary metabolites: a review. – Z. Naturforsch., Sect. C 65(34): 157173. https://doi.org/10.1515/znc-2010-3-401

    • Search Google Scholar
    • Export Citation
  • Molnár, K. and Farkas, E. (2011): Depsides and depsidones in populations of the lichen Hypogymnia physodes and its genetic diversity. – Ann. Bot. Fennici 48: 473482. https://doi.org/10.5735/085.048.0605

    • Search Google Scholar
    • Export Citation
  • Moya, P., Škaloud, P., Chiva, S., García-Breijo, F. J., Reig-Armiñana, J., Vančurová, L. and Barren, E. (2015): Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Isl ands ecosystems. – Int. J. Syst. Evol. Microbiol. 65 (6): 18381854. https://doi.org/10.1099/ijs.0.000185

    • Search Google Scholar
    • Export Citation
  • Nash III, T. H. (2008): Lichen biology, 2nd ed. – University Press, Cambridge.

  • Nguyen, K.-H., Chollet-Krugler, M., Gouault, N. and Tomasi, S. (2013): UV-protectant metabolites from lichens and their symbiotic partners. – Natural Product Reports 30 (12): 14901508. https://doi.org/10.1039/c3np70064j

    • Search Google Scholar
    • Export Citation
  • Orange, A., James, P. W. and White, F. J. (2010): Microchemical methods for the identification of lichens, second ed. - British Lichen Society, London.

    • Search Google Scholar
    • Export Citation
  • Pandir, D., Hilooglu, M. and Kocakaya, M. (2018): Assessment of anticytotoxic effect of lichen Cladonia foliacea extract on Allium cepa root tips. – Environ. Sci. Pollut. Res. 25 (32): 3247832490. https://doi.org/10.1007/s11356-018-3221-6

    • Search Google Scholar
    • Export Citation
  • Peksa, O. and Škaloud, P. (2008): Changes in chloroplast structure in lichenized algae. – Symbiosis 46: 153160.

  • P.-Verseghy, K. (1976): Xerofiton zuzmófajok anatómiai vizsgálata. (Anatomical investigations on xerophytous lichen species). – Studia bot. hung. 11: 3548.

    • Search Google Scholar
    • Export Citation
  • R Core Team (2013): R: a language and environment for statistical computing. – Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.

    • Search Google Scholar
    • Export Citation
  • Shukla, V., Patel, D. K., Bajpai, R., Semwal, M. and Upreti, D. K. (2016): Ecological implication of variation in the secondary metabolites in parmelioid lichens with respect to altitude. – Environ. Sci. Pollut. Res. 23 (2): 13911397. https://doi.org/10.1007/s11356-015-5311-z

    • Search Google Scholar
    • Export Citation
  • Škaloud, P. and Peksa, O. (2008): Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta). – Biologia 63 (6): 873880. https://doi.org/10.2478/s11756-008-0115-y

    • Search Google Scholar
    • Export Citation
  • Smith, C. W., Aptroot, A., Coppins, B. J. et al. (eds) (2009): The lichens of Great Britain and Ireland.British Lichen Society, London.

    • Search Google Scholar
    • Export Citation
  • Solhaug, K. A. and Gauslaa, Y. (1996): Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. – Oecologia 108: 412418. https://doi.org/10.1007/bf00333715

    • Search Google Scholar
    • Export Citation
  • Solhaug, K. A. and Gauslaa, Y. (2001): Acetone rinsing – a method for testing ecological and physiological roles of secondary compounds in living lichens. – Symbiosis 30: 301315.

    • Search Google Scholar
    • Export Citation
  • Solhaug, K. A. and Gauslaa, Y. (2004): Photosynthates stimulate the UV-B induced fungal anthraquinones synthesis in the foliose lichen Xanthoria parietina. – Plant, Cell and Environment 27: 167176. https://doi.org/10.1111/j.1365-3040.2003.01129.x

    • Search Google Scholar
    • Export Citation
  • Stocker-Wörgötter, E. (2008): Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. – Natural Product Reports 25: 188200. https://doi.org/10.1039/b606983p

    • Search Google Scholar
    • Export Citation
  • Stocker-Wörgötter, E. (2015): Biochemical diversity and ecology of lichen-forming fungi: Lichen substances, chemosyndromic variation and origin of polyketide-type metabolites (biosynthetic pathways). – In: Upreti, D. K., Divakar, P. K., Shukla, V. and Bajpai, R. (eds): Recent advances in lichenology: modern methods and approaches in biomonitoring and bioprospection. 2. Springer, New Delhi, Heidelberg, New York, Dordrecht, London, pp. 161180.

    • Search Google Scholar
    • Export Citation
  • Stofer, S., Bergamini, A., Aragón, G. et al. (2006): Species richness of lichen functional groups in relation to l and use intensity. – Lichenologist 38 (4): 331353. https://doi.org/10.1017/s0024282906006207

    • Search Google Scholar
    • Export Citation
  • Verseghy, K., Kovács-Láng, E. and Mázsa, K. (1987): Diurnal and seasonal changes of thallus water content of xerothermic lichens. – Lichen Physiol. Biochem. 2: 3144.

    • Search Google Scholar
    • Export Citation
  • Vráblíková, H., McEvoy, M., Solhaug, K. A., Barták, M. and Gauslaa, Y. (2006): Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. – J. Photochem. Photobiol. B: Biology 83: 151162. https://doi.org/10.1016/j.jphotobiol.2005.12.019

    • Search Google Scholar
    • Export Citation
  • Wirth, V., Hauck, M. and Schultz, M. (2013): Die Flechten Deutschlands.Ulmer Verlag, Stuttgart, 1244 pp.

  • Yilmaz, M., Turk, A. O., Tay, T. and Kıvanc, M. (2004): The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents. – Z. Naturforsch., Sect. C 59: 249254. https://doi.org/10.1515/znc-2004-3-423

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2020 0 38 42
Jul 2020 0 46 46
Aug 2020 0 31 22
Sep 2020 0 43 62
Oct 2020 0 46 33
Nov 2020 0 32 30
Dec 2020 0 6 1