The terricolous species Cladonia foliacea (Cladoniaceae, lichenised Ascomycota) widely distributed in open, dry lowland steppe and rocky mountain grassland vegetation in Europe was chosen as a potential test organism for ecological experiments, since their thalli are producing cortical solar radiation-protective and UV screening pigment dibenzofuran usnic acid and medullary secondary substance depsidone fumarprotocetraric acid. Significant seasonal differences were found in the amounts of lichen secondary metabolites analysed by HPTLC and HPLC-PDA between summer and winter collected thalli in sandy grassland area in Hungary. The concentrations of usnic acid varied between 7.34 and 15.52 mg/g in summer collected samples and 13.90 and 21.61 mg/g in winter collected ones. A comparable amount (11.61±0.29 mg/g) was measured in pulverised samples. The concentrations of fumarprotocetraric acid varied between 0.60 and 3.01 mg/g in summer collected samples and 2.26 and 5.81 mg/g in winter collected thalli. A comparable amount (2.45±0.21 mg/g) was found in pulverised samples. The range of concentration values is comparable with data known from lichens. A higher amount of usnic acid is produced in winter probably to ensure sufficient protection also for summer. The fumarprotocetraric acid content of the medulla might contribute to the solar irradiation reflecting role of the pale lower surface lobes turning upwards in dry condition.
Anar, M., Orhan, F., Alpsoy, L., Gulluce, M., Asian, A. and Agar, G. (2013): The antioxidant and antigenotoxic potential of methanol extract of Cladonia foliacea (Huds.) Willd. – Toxicol. Indust. Health 32 (4): 721–729. https://doi.org/10.1177/0748233713504805
Archer, A. W. (1981): Quantitative distribution of lichen products in Australian scyphose Cladonia species. – Lichenologist 13: 259–263. https://doi.org/10.1017/s0024282981000340
Armaleo, D., Zhang, Y. and Cheung, S. (2008): Light might regulate divergently depside and depsidone accumulation in the lichen Parmotrema hypotropum by affecting thallus temperature and water potential. – Mycologia 100 (4): 565–576. https://doi.org/10.3852/07-162r
Arup, U., Ekman, S., Lindblom, L. and Mattsson, J.-E. (1993): High performance thin layer chromatography (HPTLC), an improved technique for screening lichen substances. – Lichenologist 25 (1): 61–71. https://doi.org/10.1006/lich.1993.1018
Asian, A., Güllüce, M., Sökmen, M., Adıgüzel, A., Şahin, F. and Özkan, H. (2006): Antioxidant and antimicrobial properties of the lichens Cladonia foliacea, Dermatocarpon miniatum, Evernia divaricata, Evernia prunastri and Neofuscelia pulla. – Pharm. Biol. 44 (4): 247–252. https://doi.org/10.1080/13880200600713808
Asplund, J., Siegenthaler, A. and Gauslaa, Y. (2017): Simulated global warming increases usnic acid but reduces perlatolic acid in the mat-forming terricolous lichen Cladonia stellaris. – Lichenologist 49 (3): 269–274. https://doi.org/10.1017/s0024282917000159
BeGora, M. D. and Fahselt, D. (2001): Usnic acid and atranorin concentrations in lichens in relation to bands of UV irradiance. – The Bryologist 104 (1): 134–140. https://doi.org/10.1639/0007-2745(2001)104[0134:uaaaci]2.0.co;2
Bergamini, A., Scheidegger, C., Stofer, S. et al. (2005): Performance of macrolichens and lichen genera as indicators of lichen species richness and composition. – Conservation Biol. 19 (4): 1051–1062. https://doi.org/10.1111/j.1523-1739.2005.00192.x-i1
Bjerke, J. W., Elvebakk, A., Dominguez, E. and Dahlback, A. (2005): Seasonal trends in usnic acid concentrations of Arctic, alpine and Patagonian populations of the lichen Flavocetraria nivalis. – Phytochemistry 66: 337–344. https://doi.org/10.1016/j.phytochem.2004.12.007
Borhidi, A., Kevey, B. and Lendvai, G. (2012): Plant communities of Hungary. – Akadémiai Kiadó, Budapest, 544 pp.
Calcott, M. J., Ackerley, D. F., Knight, A., Keyzers, R. A. and Owen, J. G. (2018): Secondary metabolism in the lichen symbiosis. – Chem. Soc. Reviews 47 (5): 1730–1760. https://doi.org/10.1039/c7cs00431a
Candotto Carniel, F., Pellegrini, E., Bove, F. and Crosera, M. (2017): Acetone washing for the removal of lichen substances affects membrane permeability. – Lichenologist 49(4): 387–395. https://doi.org/10.1017/s0024282917000263
Cocchietto, M., Skert, N., Nimis, P. L. and Sava, G. (2002): A review on usnic acid, an interesting natural compound. – Die Naturwissenschaften 89: 137–146. https://doi.org/10.1007/s00114-002-0305-3
Elix, J. A. (1996): Biochemistry and secondary metabolites. – In: Nash III, T. H. (ed.): Lichen biology, 1st ed. Cambridge University Press, Cambridge, pp. 155–180.
Emsen, B., Yildirim, E., Asian, A., Anar, M. and Ercifli, S. (2012): Insecticidal effect of the extracts of Cladonia foliacea (Huds.) Willd. and Flavoparmelia caperata (L.) Hale against adults of the grain weevil, Sitophilus granarius (L.) (Coleoptera: Curculionidae). – Egypt. J. Biol. Pest Cont. 22 (2): 145–149.
Ertl, L. (1951): Über die Lichtverhältnisse in Laubflechten. – Planta 39 (3): 245–270. https://doi.org/10.1007/bf01909397
Farkas, E., Biró, B., †Csintalan, Zs. and Veres, K. (2020): Acetone rinsing tolerance of the lichen species Cladonia foliacea is considerable. – Lichenologist, in prep.
Feige, B., Lumbsch, H. T., Huneck, S. and Elix, J. A. (1993): Identification of lichen substances by standardized high-performance liquid chromatographic method. – J. Chromatogr. 646: 417–427. https://doi.org/10.1016/0021-9673(93)83356-w
Galloway, D. J. (1993): Global environmental change: lichens and chemistry. – In: Feige, G. B. and Lumbsch, H. T. (eds): Phytochemistry and chemotaxonomy of lichenized Ascomycetes. A Festschrift in honour of Siegfried Huneck. J. Cramer, Berlin, Stuttgart, Bibl. Lichenol. 53: 87–95.
Gauslaa, Y., Azharul, Alam Md., Lucas, P.-L., Chowdhury, D. P. and Solhaug, K. A. (2017): Fungal tissue per se is stronger as a UV-B screen than secondary fungal extrolites in Lobaria pulmonaria. – Fungal Ecol. 26: 109–113. https://doi.org/10.1016/fune-co.2017.01.005
Hauck, M. (2011): Eutrophication threatens the biochemical diversity in lichens. – Lichenologist 43: 147–154. https://doi.org/10.1017/s0024282910000654
Hauck, M., Willenbruch, K. and Leuschner, C. (2009): Lichen substances prevent lichens from nutrient deficiency. – J. Chem. Ecol. 35: 71–73. https://doi.org/10.1007/s10886-008-9584-2
Hillmann, J. and Grummann, V. (1957): Kryptogamenflora der Mark Brandenburg und angrenzender Gebiete. Band VIII: Flechten. – Gebrüder Borntraeger, Berlin-Nikolassee, 898 pp.
Honegger, R. (1986): Ultrastructural studies in lichens. II. Mycobiont and photobiont cell wall surface layers and adhering crystalline lichen products in four Parmeliaceae. – New Phytol. 103: 797–808. https://doi.org/10.1111/j.1469-8137.1986.tb00854.x
Honegger, R. (1997): Metabolic interactions at the mycobiont-photobiont interface in lichens. – In: Carroll, G. C. and Tudzynski, P. (eds): The Mycota V. Plant relationships. Springer, Berlin, Heidelberg, New York, pp. 209–221.
Honegger, R. (2012): The symbiotic phenotype of lichen-forming ascomycetes and their endo- and epibionts. – In: Hock, B. (ed.): The Mycota IX. Fungal Associations. Springer, Berlin, Heidelberg, pp. 287–339.
Huneck, S. (1999): The significance of lichens and their metabolites. – Die Naturwissenschaften 86: 559–570. https://doi.org/10.1007/s001140050676.
Huneck, S. and Yoshimura, I. (1996): Identification of lichen substances. – Springer Verlag, Berlin, Heidelberg, 493 pp.
Ji, X. and Khan, I. A. (2005): Quantitative determination of usnic acid in Usnea lichen and its products by reversed-phase liquid chromatography with photodiode array detector. – J. AOAC Int. 88 (5): 1265–1268.
Kalapos, T. and Mázsa, K. (2001): Juniper shade enables terricolous lichens and mosses to maintain high photochemical efficiency in a semiarid temperate sand grassland. – Photosynthetica 39 (2): 263–268. https://doi.org/10.1023/a:1013749108008
Khadhri, A., Mendili, M., Araújo, M. E. M. and Seaward, M. R. D. (2019): Comparative study of secondary metabolites and bioactive properties of the lichen Cladonia foliacea with and without the lichenicolous fungus Heterocephalacria bachmannii. – Symbiosis 79 (1): 25–31. https://doi.org/10.1007/s13199-019-00630-6
Koparal, A. T. (2015): Anti-angiogenic and antiproliferative properties of the lichen substances (-)-usnic acid and vulpinic acid. – Z. Naturforsch., Sect. C 70(5–6): 159–164. https://doi.org/10.1515/znc-2014-4178
Kosanić, M., Ristić, S., Stanojković, T., Manojlović, N. and Ranković, B. (2018): Extracts of five Cladonia lichens as sources of biologically active compounds. – Farmacia 66 (4): 644–651. https://doi.org/10.31925/farmacia.2018.4.13.
Lange, O. L., Schulze, E. D. and Koch, W. (1970): Experimentell-ökologische Untersuchungen an Flechten der Negev-Wüste. II. CO2-Gaswechsel und Wasserhaushalt von Ramalina maciformis (Del.) Bory am natürlichen Standort während der sommerlichen Trockenperiode. – Flora 159: 38–62. https://doi.org/10.1016/s0367-2530(17)31005-8
Matteucci, E., Occhipinti, A., Piervittori, R., Maffei, M. E. and Favero-Longo, S. E. (2017): Morphological, secondary metabolite and ITS (rDNA) variability within usnic acid-containing lichen thalli of Xanthoparmelia explored at the local scale of rock out-crop in W-Alps. – Chemistry and Biodiversity 14 (6): e1600483. https://doi.org/10.1002/cbdv.201600483
Mázsa, K. (1994): Field studies on CO2 fixation of Cladonia furcata and Cladonia convoluta. – Cryptogamic Bot. 4: 207–211.
Mázsa, K., Mészáros, R. and Kalapos, T. (1998): Ecophysiological background of microhabitat preference by soil-living lichens in a sand grassland-forest mosaic; study plan and initial results. – Sauteria 9: 165–171.
Mázsa, K., Mészáros, R. and Kalapos, T. (1999): Ecophysiology of steppe mosses and lichens. – In: Kovács-Láng, E., Molnár, E., Kröel-Dulay, Gy. and Barabás, S. (eds): Long term ecological research in the Kiskunság, Hungary. Institute of Ecology and Botany, Hungarian Academy of Sciences, Vácrátót, pp. 37–38.
McEvoy, M., Solhaug, K. A. & Gauslaa, Y. (2007) Solar radiation screening in usnic acid-containing cortices of the lichen Nephroma arcticum. – Symbiosis 43: 143–150.
Mitrović, T., Stamenković, S., Cvetković, V., Tošić, S., Stanković, M., Radojević, I., Stefanović, O., Čomić, L., Dačic, D., Ćurčić, M. and Marković, S. (2011): Antioxidant, antimicrobial and antiproliferative activities of five lichen species. – Int. J. Mol. Sci. 12 (8): 5428–5448. https://doi.org/10.3390/ijms12085428
Mitrović, T. L., Stamenković, S. M., Cvetković, V. J., Radulović, N. S., Mladenović, M. Z., Stanković, M. S., Topuzović, M. D., Radojević, I. D., Stefanović, O. D., Vasić, S. M., Comić, L. R., Seklić, D. S., Obradović, A. D. and Marković, S. D. (2015): Contribution to the knowledge of the chemical composition and biological activity of the lichens Cladonia foliacea Huds. (Wild.) and Hypogymnia physodes (L.). – Oxidation Communications 38 (4A): 2016–2032.
Molnár, K. and Farkas, E. (2010): Current results on biological activities of lichen secondary metabolites: a review. – Z. Naturforsch., Sect. C 65(3–4): 157–173. https://doi.org/10.1515/znc-2010-3-401
Molnár, K. and Farkas, E. (2011): Depsides and depsidones in populations of the lichen Hypogymnia physodes and its genetic diversity. – Ann. Bot. Fennici 48: 473–482. https://doi.org/10.5735/085.048.0605
Moya, P., Škaloud, P., Chiva, S., García-Breijo, F. J., Reig-Armiñana, J., Vančurová, L. and Barren, E. (2015): Molecular phylogeny and ultrastructure of the lichen microalga Asterochloris mediterranea sp. nov. from Mediterranean and Canary Isl ands ecosystems. – Int. J. Syst. Evol. Microbiol. 65 (6): 1838–1854. https://doi.org/10.1099/ijs.0.000185
Nash III, T. H. (2008): Lichen biology, 2nd ed. – University Press, Cambridge.
Nguyen, K.-H., Chollet-Krugler, M., Gouault, N. and Tomasi, S. (2013): UV-protectant metabolites from lichens and their symbiotic partners. – Natural Product Reports 30 (12): 1490–1508. https://doi.org/10.1039/c3np70064j
Orange, A., James, P. W. and White, F. J. (2010): Microchemical methods for the identification of lichens, second ed. - British Lichen Society, London.
Pandir, D., Hilooglu, M. and Kocakaya, M. (2018): Assessment of anticytotoxic effect of lichen Cladonia foliacea extract on Allium cepa root tips. – Environ. Sci. Pollut. Res. 25 (32): 32478–32490. https://doi.org/10.1007/s11356-018-3221-6
Peksa, O. and Škaloud, P. (2008): Changes in chloroplast structure in lichenized algae. – Symbiosis 46: 153–160.
P.-Verseghy, K. (1976): Xerofiton zuzmófajok anatómiai vizsgálata. (Anatomical investigations on xerophytous lichen species). – Studia bot. hung. 11: 35–48.
R Core Team (2013): R: a language and environment for statistical computing. – Vienna, Austria: R Foundation for Statistical Computing. http://www.R-project.org/.
Shukla, V., Patel, D. K., Bajpai, R., Semwal, M. and Upreti, D. K. (2016): Ecological implication of variation in the secondary metabolites in parmelioid lichens with respect to altitude. – Environ. Sci. Pollut. Res. 23 (2): 1391–1397. https://doi.org/10.1007/s11356-015-5311-z
Škaloud, P. and Peksa, O. (2008): Comparative study of chloroplast morphology and ontogeny in Asterochloris (Trebouxiophyceae, Chlorophyta). – Biologia 63 (6): 873–880. https://doi.org/10.2478/s11756-008-0115-y
Smith, C. W., Aptroot, A., Coppins, B. J. et al. (eds) (2009): The lichens of Great Britain and Ireland. – British Lichen Society, London.
Solhaug, K. A. and Gauslaa, Y. (1996): Parietin, a photoprotective secondary product of the lichen Xanthoria parietina. – Oecologia 108: 412–418. https://doi.org/10.1007/bf00333715
Solhaug, K. A. and Gauslaa, Y. (2001): Acetone rinsing – a method for testing ecological and physiological roles of secondary compounds in living lichens. – Symbiosis 30: 301–315.
Solhaug, K. A. and Gauslaa, Y. (2004): Photosynthates stimulate the UV-B induced fungal anthraquinones synthesis in the foliose lichen Xanthoria parietina. – Plant, Cell and Environment 27: 167–176. https://doi.org/10.1111/j.1365-3040.2003.01129.x
Stocker-Wörgötter, E. (2008): Metabolic diversity of lichen-forming ascomycetous fungi: culturing, polyketide and shikimate metabolite production, and PKS genes. – Natural Product Reports 25: 188–200. https://doi.org/10.1039/b606983p
Stocker-Wörgötter, E. (2015): Biochemical diversity and ecology of lichen-forming fungi: Lichen substances, chemosyndromic variation and origin of polyketide-type metabolites (biosynthetic pathways). – In: Upreti, D. K., Divakar, P. K., Shukla, V. and Bajpai, R. (eds): Recent advances in lichenology: modern methods and approaches in biomonitoring and bioprospection. 2. Springer, New Delhi, Heidelberg, New York, Dordrecht, London, pp. 161–180.
Stofer, S., Bergamini, A., Aragón, G. et al. (2006): Species richness of lichen functional groups in relation to l and use intensity. – Lichenologist 38 (4): 331–353. https://doi.org/10.1017/s0024282906006207
Verseghy, K., Kovács-Láng, E. and Mázsa, K. (1987): Diurnal and seasonal changes of thallus water content of xerothermic lichens. – Lichen Physiol. Biochem. 2: 31–44.
Vráblíková, H., McEvoy, M., Solhaug, K. A., Barták, M. and Gauslaa, Y. (2006): Annual variation in photoacclimation and photoprotection of the photobiont in the foliose lichen Xanthoria parietina. – J. Photochem. Photobiol. B: Biology 83: 151–162. https://doi.org/10.1016/j.jphotobiol.2005.12.019
Wirth, V., Hauck, M. and Schultz, M. (2013): Die Flechten Deutschlands. – Ulmer Verlag, Stuttgart, 1244 pp.
Yilmaz, M., Turk, A. O., Tay, T. and Kıvanc, M. (2004): The antimicrobial activity of extracts of the lichen Cladonia foliacea and its (-)-usnic acid, atranorin, and fumarprotocetraric acid constituents. – Z. Naturforsch., Sect. C 59: 249–254. https://doi.org/10.1515/znc-2004-3-423