Author:
N. Riezing , H-2851 Környe, Koltói A. u. 6, Hungary

Search for other papers by N. Riezing in
Current site
Google Scholar
PubMed
Close
Free access

Following the work of Tatár (1939), no new revised and detailed list was made of endemic plants of the Pannonicum phytogeographical region, which takes into account the latest research results. A survey of vascular plants endemic and subendemic to the Pannonicum is presented here based on a critical revision of published and sometimes unpublished data on contemporary taxonomic and chorological knowledge. For this, it was necessary to review the delineation of Pannonicum and the problem of drawing the boundaries. I would also like to draw the attention to the Pannonian flora islands outside the Carpathians, which descend along the sandy alluvium of the Danube. The research covers 11 countries: Austria, Croatia, the Czech Republic, Hungary, Romania, Serbia, Slovakia, Slovenia and a small part of Bosnia and Herzegovina, Ukraine and Bulgaria (flora islands). The final evaluation of endemic status was made for 225 taxa of vascular plants, including 143 taxa confirmed as endemic or subendemic to the Pannonicum, 5 narrowly distributed taxa shared endemic of the Pannonicum and western part of the Carpaticum and 77 taxa are not endemic according to current taxonomic and phytogeographical knowledge (the list does not include hybrids). The final list of endemic and subendemic taxa includes 42 species, 29 subspecies and 73 apomictic species (including 47 taxa of Sorbus and 23 taxa of Taraxacum). Tatár mentions 55 taxa (without apomicts) of which only 29 (53%) are still considered endemic today. In terms of habitat preferences for (sub)endemic taxa most plants (excluding apomictic taxa) occur in rocky or sandy habitats.

Abstract

Following the work of Tatár (1939), no new revised and detailed list was made of endemic plants of the Pannonicum phytogeographical region, which takes into account the latest research results. A survey of vascular plants endemic and subendemic to the Pannonicum is presented here based on a critical revision of published and sometimes unpublished data on contemporary taxonomic and chorological knowledge. For this, it was necessary to review the delineation of Pannonicum and the problem of drawing the boundaries. I would also like to draw the attention to the Pannonian flora islands outside the Carpathians, which descend along the sandy alluvium of the Danube. The research covers 11 countries: Austria, Croatia, the Czech Republic, Hungary, Romania, Serbia, Slovakia, Slovenia and a small part of Bosnia and Herzegovina, Ukraine and Bulgaria (flora islands). The final evaluation of endemic status was made for 225 taxa of vascular plants, including 143 taxa confirmed as endemic or subendemic to the Pannonicum, 5 narrowly distributed taxa shared endemic of the Pannonicum and western part of the Carpaticum and 77 taxa are not endemic according to current taxonomic and phytogeographical knowledge (the list does not include hybrids). The final list of endemic and subendemic taxa includes 42 species, 29 subspecies and 73 apomictic species (including 47 taxa of Sorbus and 23 taxa of Taraxacum). Tatár mentions 55 taxa (without apomicts) of which only 29 (53%) are still considered endemic today. In terms of habitat preferences for (sub)endemic taxa most plants (excluding apomictic taxa) occur in rocky or sandy habitats.

INTRODUCTION

The most characteristic taxa in an area, country or biogeographical region are endemic species. Because of their importance to biodiversity and also of particular importance in studies of floristic and vegetation history of different areas they have attracted the attention of biologists as well as conservationists. Endemic plants may be an effective indicator for identifying and assessing regions with high biodiversity value. The growing attention on endemism and endemic species can be visualised based on the rising number of scientific publications. They can also be promoted well in the media: because they do not live elsewhere they often become “national” species. Plant endemics represent an important element of biodiversity, thus having a decisive role in studies for conservation planning. Countries have a particular responsibility to protect those species that are restricted to their boundaries. Today endemism and endemic species are part of national and international laws and conventions; internet sites and many documentary films use these terms for characterising globally rare and threatened animals and plants (Hobohm 2014). Numerous lists have already been made of endemic plant species in a country, geographical region (Essl et al. 2009, Hurdu et al. 2012, Kaplan 2012, Kliment 1999, Kliment et al. 2016, Mráz et al. 2016, Nikolić et al. 2020, Novikov and Hurdu 2015, Petrova 2006, Piękoś-Mirkowa and Mirek 2003, etc.) or endemic species of a region within a country (Lubarda et al. 2014).

The Pannonian biogeographical region is an accepted biogeographical region in Europe and a separate unit in biogeographical maps (e.g. European Union: Anon. 2021). This biogeographical region is accepted in both zoology (Varga 2018) and botany. In botany, vegetational (Fekete et al. 2016) and floristic delineation (e.g.: Soó 1947) are also known. In the present paper, we take the floristic delineation (Soó 1947) as a basis. The name of this floristic region is Pannonicum.

Despite its importance and uniqueness, we lack an up-to-date list of endemic plant species. The last detailed article was written more than 80 years ago (Tatár 1939). The ongoing research in taxonomy and plant distribution resulted in a deeper knowledge of numerous taxa, which is reflected in changes in their endemic status. Following expert taxonomic reevaluations, some of the species and subspecies were included in other taxa with a broader (and so non-endemic) distribution area. Another group of taxa that were previously considered to be endemic were later excluded from the list of endemics due to new chorological data (and vice versa). Since 1939 many new species have been described that are thought to be endemic. The main aim of this paper was to review the older results (e.g. Tatár 1939) from this area, complete the collection of data for the whole Pannonicum and revise the information on taxonomy and distribution of endemic taxa in the light of recently published knowledge.

Delineation of Pannonicum

The speciality and unique character of the flora of the Great Hungarian Plain was already recognised by Kerner (1863). According to him, these grasslands are related to the steppes of the east (South Russia) and this is their “western island”. He also recognised that the steppe flora in the west along the Danube extends beyond Vienna to Wachau and the Moravian Basin. He had already used the term “Pannonian flora”, but still considered it the territory of the Pontic area (Kerner 1886). Borbás noticed the flora connection and similarity between the Hungarian Mountains and the Great Plain, and in his interpretation these together make up the Hungarian flora region (Borbás 1896, 1900). By the turn of the century, the first flora maps were completed (Borbás 1900, Kerner and Wettstein 1888). However, there was no agreement regarding the classification of the South Transdanubian flora. Kerner (1886) classified this as the Pannonian, while Borbás (1900) classified it as the Illyrian flora. At the beginning of the 20th century, many famous Hungarian botanists worked on the preparation of the flora classification in the Carpathian Basin (e.g. Borbás 1905, Jávorka 1924–1925, Rapaics 1910, Simonkai 1910, Soó 1933 a, Tuzson 1915), and researched the unique characters of the Pannonian flora and presented the differences from the Pontic flora (Borbás 1905, Rapaics 1918, Tuzson 1913, 1915). Rapaics (1910) roughly draws the boundaries of Pannonicum. The map of Jávorka’s book (1924–1925) essentially outlines the phytogeographical division of the Carpathian Basin accepted today. Soó (1933 b) synthesised the knowledge of that time and drew the boundaries of smaller phytogeographical units within the territory of historical Hungary. In his later work, he also outlines the boundaries of the Pannonian flora beyond the Carpathian Basin (Soó 1947) and draws up a comprehensive and detailed demarcation of the Pannonicum (floristic region), which (except for the north-western part) has remained essentially or only slightly changed.

In the second half of the 20th century, researchers examined the borders of the Pannonian flora and its smaller units only within the borders of their own country (e.g. Soó 1961). The western, northwestern, and northern parts of the Pannonicum’s border are the best researched and accepted. In the present dissertation, the works of Futák (1984), Király (2001), Michalko et al. (1986), Niklfeld (1964), Pócs (1981), Simon (2005), Skalický (1988), Vojtkó (2016), Will-ner (2013) are considered as guidelines for the delimitation in this section.

However, there are also two areas here where the flora boundary is not clear: Zemplén Mts in the northeast and the “Thermenlinie” in the west. In the case of the Zemplén Mts, it has long been a question of how far the Carpaticum extends into the Pannonicum. According to most authors, it extends deep into the south but Michalko et al. (1986) draw the line further north. Recent and more detailed research also supports this (Vojtkó in litt.). (The two types of delimination are shown by a dashed line on the map). The “Thermenlinie” is the area between the Vienna Basin and the Eastern Alps (south of Vienna). This very eastern margin of the Alps is strongly influenced by the Pannonian climate and phytogeographically it is a transitional area between the Alpicum and Pannonicum floristic regions with strong Pannonian influence (Willner 2013). Recent studies suggest that this Thermenlinie is part of the Pannonian region even though it belongs geologically to the Alps. However, it is a difficult question how many kilometres the Pannonian region penetrates into the Alps (Willner in litt.).

The southwestern border from the southern part of Burgenland (south of the rivers Pinka and Lafnitz) through Slovenia and Croatia to Bosnia and Serbia remains also questionable (Fekete et al. 2016, Marinček 1995, Niklfeld 1993, Willner 2013, Wraber 1969). In Slovenia, Wraber (1969) considered the eastern part of the country, east of the Maribor–Krško (Sava) and Kostanjevica (Krka) lines, to be a “sub-Pannonian” area, but mentioned that the most significant Pannonian influence in vegetation is only up to the Mura River. From here, to the west and south, the alpine influence is becoming more and more prevalent. Zupančič et al. (1987) classify areas south of the Slovenska Bistrica– Drava line as Illyricum floristic region.

The northern border of the Illyricum is mostly drawn at the foothills surrounding the Dinaric Mountains (Fukarek 1979, Meusel et al. 1965) or along the Sava river (from Zagreb) (Marinček 1995). South Slavic botanists consider the area between the Sava and the Drava river, and even to Lake Balaton to be transitional (“prepannonic region”) and classify it as Pannonicum, but mention that the Illyrian flora islands are still present here extrazonally (Marinček 1995). Fekete et al. (2016) (Hungarian botanists) do not accept this view, as they do not see what kind of floristic or vegetation arguments support such an extension of the boundary from the Pannonian side. The area between the Drava and the Sava is believed to be uncharacteristic and transitional, difficult or impossible to classify into any phytogeographical region. The areas north of the Drava river are named in Hungarian literature as “Praeillyricum” and are mostly classified as part of the Pannonicum (e.g. Pócs 1981).

The phytogeographical division of the area between the Sava and Lake Balaton is therefore not uniform, but the authors agree that it is a transitional region between Pannonicum and Illyricum. The delimitation of the Pannonicum was also based on the work of Soó (1947) in this section, but referring to the transitional area, the “boundary” on the map is indicated by a dashed line. The drawing of the eastern and southeastern borders with minor modifications (by the author) also follows the work of Soó (1947). (Fig. 1).

Fig. 1
Fig. 1

Map showing the delineation of the Pannonicum and its subunits. T = Thermenlinie, X = Pannonian flora islands

Citation: Acta Botanica Hungarica 65, 1-2; 10.1556/034.65.2023.1-2.8

Pannonicum is surrounded by the Carpaticum (north and east), Moesiacum (southeast), Illyricum (south), Alpicum (west) and Hercynicum (northwest) floristic regions.

Most of the area of the Pannonicum is located in Hungary, but the area is also located in Austria (part of Burgenland, the northeastern part of Lower Austria with the Hainburger Berge, which is geographically part of the Carpathians), the Czech Republic (southeastern Moravia, part of it belongs geographically to the Carpathians: Central and South Moravian Carpathians), the southern part of Slovakia, the western edge of Ukraine, the northwestern and western verge of Romania (Partium, Bánság), the northern part of Serbia, the northeastern edge of Bosnia, northeastern plains in Croatia and the northeastern edge of Slovenia.

Islands of the Pannonian flora

It is not part of the Pannonicum delineated here but there are some “Pannonian flora islands” along the lower part of the Danube outside the Carpathian Mountains. These are Pannonic sand steppes (Natura 2000 code: 6260), where endemic Pannonian species also occur (Vladimirov and Tsoneva 2006, Šefferová Stanová et al. 2008).

The Pannonian sand steppe vegetation can still be found on the northern edge of the Iron Gate in the wide valley around Golumbac (this work classifies this area as part of Pannonicum). After crossing the Carpathians (this gorge called Iron Gate) the Danube arrives in a flat area where it has deposited sandy alluvium in a few places. On these sand dunes appeared sand steppe vegetation with many Pannonian elements for example around Kladovo and Prahovo-Radujevac in Serbia. In the middle of the 19th century the area of these sand steppes reached 800 hectares in both places (Pančić 1863), but this decreased significantly by the end of the century (Adamović 1904). Since then most of them have been cultivated or degraded and only very small fragments have survived. Some of the previously found Pannonian species have become extinct: Colchicum arenarium, Iris arenaria, Sedum urvillei subsp. hillebrandtii. Others can still be found: Dianthus diutinus, D. pontederae, Tragopogon floccosus. A similar sand flora is found on the Romanian side of the Danube near Pisculet (occurrence of Colchicum arenarium and Festuca vaginata) and Gruia. Moreover, this Pannonian inland dunes type vegetation descends even to the northwestern edge of Bulgaria (Archar, Orsoya-Slivata) with Pannonian species, such as Festuca vaginata or Tragopogon floccosus (Vladimirov and Tsoneva 2006).

Division of Pannonicum

Pannonicum was divided into five parts by phytogeography (Molnár et al. 2018, Pócs 1981, Soó 1961, 1964 a): Eupannonicum, Matricum, Bakonyicum, Praeillyricum, Praenoricum.

Eupannonicum: The plains from Southern Moravia (Czech Republic) in the northwest to Deliblato Sands (Serbia) in the southeast. This area makes up nearly 75% of the Pannonicum. The Transdanubian and the North Hungarian Mountains divide into two parts. Within this delimited area there are some foothills, hills (e.g. Hainburger Berge, Kaszonyi-hegy) and mountain (Fruška Gora). Most of the area belongs to the forest-steppe zone.

Matricum: This is a mountain range (more or less the geographical North Hungarian Mountains – Északi-középhegység) from the Börzsöny to the southern part of the Zemplén Mts. Limestone (Bükk, Gömör-Tornai karszt/Gemersko-Turniansky Kras) and eruptive bedrocks (e.g. andesite, basalt) make up a significant part of the mountains. The vegetation is characterised by two faces. The flora of the higher altitudes (800–900 m), the northern exposed slopes and the gorge valleys are mountainous (include some Carpathian elements), while the lower areas and the southern slopes are mostly dominated by thermophilous Pannonian vegetation.

Bakonyicum: The Transdanubian Mountains (Dunántúli-középhegység) from the Danube Bend to the Keszthelyi-hegység. The most typical bedrock is dolomite and limestone here. The climate of this region has a strong sub-Mediterranean influence on the southern slopes.

Praeillyricum: This area has two mountains (Mecsek, Villányi-hegység) and collin regions (Somogy–Tolnai-dombvidék). It is an intermediate area between the Pannonicum and the Illyricum. The number of Illyrian elements is relatively high in the south but gradually disappears in the north.

Praenoricum: This is an intermediate zone between the Alpicum and the Pannonicum floristic regions.

Pannonian endemics in previous literature

The compilation of endemic species of an area or landscape within the Carpathian Basin was dealt with as early as the end of the 19th century (e.g. Borbás 1879, 1884, 1900, Grisebach 1872, Simonkai 1886). Some of the plants mentioned here are now considered synonyms, or non-endemic as they are more widespread. However, several of them are still considered endemic today: Centaurea scabiosa subsp. sadleriana, Cirsium brachycephalum, Dianthus diutinus, D. pontederae, Ferula sadleriana, Linum dolomiticum, L. hirsutum subsp. glabrescens, Seseli leucospermum, Noccaea (Thlaspi) jankae, etc. The first comprehensive and detailed compilation and analysis of the endemic vascular plants of the Carpathian Basin (Carpaticum and Pannonicum) can be attributed to Soó (1933 b).

The most detailed compilation of the endemism of the Pannonian flora to date is the result of the work of Tatár (1939) (student of R. Soó). The list is based on a detailed processing of the distribution area of about 55 taxa based on herbarium and literature data. The dissertation does not include such “critical” groups as Sorbus, Rosa, Rubus, Hieracium, Tilia, Thymus, Mentha. The article does not mention but did not process for example the genus Taraxacum or Ranunculus auricomus agg. group. The detailed processing of the distribution area of two other taxa considered to be endemic at that time (Ononis semi-hircina, Centaurium uliginosum) was carried out by U. Szabó (1939). Soó (1964 a) also publishes lists, but only of areas within the borders of Hungary.

Since then, only a few flora databases have collected the Pannonian endemics (e.g. Horváth et al. 1995, Simon et al. 1992). These include species described since 1939 (e.g. Scilla spetana, Vincetoxicum pannonicum), some subspecies (not all), some hybrids and several other taxa that are not considered endemic today. Fekete et al. (2011, 2014) also report compilations of Pannonian endemics. In the latter, they listed 36 species and subspecies and one hybrid, and it is mentioned that there are another 11 endemic apomictic Sorbus species. Futák collected the Pannonian endemics that live in Slovakia (Futák 1972).

Regarding Pannonian endemics, it should be mentioned that the phytogeographical Pannonicum and the geographical Carpathians overlap. The North Hungarian Mountains (phytogeographic: Matricum) for example are part of both, but also the Hainburger Berge (Austria) and a part of the Central and South-Moravian Carpathians (the Czech Republic). Therefore, there may be Carpathian endemics (in a geographical sense) (Kliment et al. 2016) that can also be treated as Pannonian endemics (in a floristic sense).

METHODS

Delimitation of endemic and subendemic taxa and evaluation of endemism

Endemic taxa are those whose distribution is restricted to a particular geographic region or habitat (Bruchmann 2011, Hobohm 2014). The delimitation of the Pannonicum is not as clear as a national border or an island (see above). The boundary is not sharp on a fine scale. For example on the border of Pannonicum and Carpaticum, the southern warm slopes grow Pannonian vegetation while the northern exposed slopes and the gorge valleys have mountainous vegetation with many Carpathian elements and they are very close together. So these different flora patches often occur alternately in the area.

The delimitation of the phytogeographic units within the Pannonicum is not easy either. The Danube Bend area which is called Visegradense in the phytogeography is a transitional area between the Matricum (North Hungarian Mountains) and the Bakonyicum (Transdanubian Mountains). Endemic plants can be found here from both regions. There are some differences between the geographical and the phytogeographical regions as well. The sand steppe vegetation of the lowlands for example creeps up the foothills in several places. This is geographically a mountain region but phytogeographically vegetation of the lowlands.

Drawing sharp boundaries is therefore difficult, often impossible. In addition, there may be isolated occurrences in special habitats (e.g. on limestone hills or in sandy areas). In this paper, the geographical delimitation does not exclude endemic taxa restricted to a particular isolated occurrence of special habitats or habitat islands (e.g. to isolated outcrops of different types of bedrock, sand, etc.) (see Kliment et al. 2016).

As subendemic I considered taxa almost exclusively found only in a certain region, but with a limited occurrence also outside this region. Achillea asplenifolia, for example, is quite widespread in the Pannonicum, but can also be found in some places in the adjacent area. The distribution area of the Chamaecytisus heuffelii is limited to a few localities only. Most of the population lives in Pannonicum, but a significant number also live in the neighbouring Iron Gate Gorge. But taxa with very limited occurrence outside a given region, e.g. taxa with a single population close to the main distribution area or taxa occurring in a transition zone between two adjacent phytochorions, were evaluated as endemic to the given region (see Kliment et al. 2016). For example endemic to the Pannonicum with a single occurrence outside but not “far” from the border (e.g. Dianthus diutinus is an occurrence in a “Pannonian flora island” near Kladovo). On the other hand, taxa with frequent occurrence in neighbouring regions or with only a single occurrence but far from the Pannonicum (e.g. Rosa facsarii is an occurrence in Albania) were not considered to be endemic or subendemic. The phytogeographical status of “Thermenlinie” is not completely clear. Because of its transitional status, taxa that occur only here are considered Pannonian subendemic.

In the evaluation of endemism, only the natural range is taken into account for plant occurrence data. The Limonium gmelini agg. for example spreads along the Austrian and Czech roads outside the Pannonicum due to road salting and international traffic (Hohla et al. 2015, Kocián et al. 2016). These data were not taken into account when determining the distribution area of the Limonium. Taxa under the subspecies rank were not evaluated as endemic. Hybrids were not evaluated as endemic but stabilised hybridogenous taxa (e.g. the apomictic taxa) were considered endemic.

Apomictic taxa (Alchemilla, Hieracium, Pilosella, Rubus, Sorbus, Taraxacum, Ranunculus auricomus agg.) form a separate group. With understanding of the apomictic origin and evolutionary stability of intermediate (hybridogenous) taxa, in 20th century the majority of researchers accepted such taxa at the level of species, but isolated from sexually reproducing species they are often referred to as “microspecies” (Hörandl 2008, Kirschner and Štěpánek 1998, Sennikov and Kurtto 2017). Their evolutionary history is mostly young (post-glacial) and such species are still evolving recently.

Among these apomictic taxa, the genus Sorbus is represented by most known Pannonian endemic species. In the current understanding, the apomictic species of Sorbus s. l. are allopolyploid (triploid or tetraploid) with typically restricted areas, sometimes confined to a single locality in which they had possibly originated. They are either single clones or lineages descending from single clones, thus having a very narrow genetic basis. The morphological variability of apomictic species is very limited and is mostly phenotypic (modification). The sexual species of Sorbus s. l. are variable in morphology and include a great diversity of genotypes. Similarly, interspecific hybrids that are diploid (allodiploid) and sexual are treated as a single taxon thus embracing all possible morphotypes of the same origin and at the same ploidy level, as long as there is no evidence of their reproductive isolation (Sennikov and Kurtto 2017).

The status of the Taraxacum group is still little known. Within the Pannonicum, we have recent literature data only for the section Palustria (Kirschner and Štěpánek 1998). However, the exact identification of the majority of the populations living here is still unknown today.

Several endemic apomictic species have also been described from the Ranunculus auricomus group (Soó 1964 b, 1965), but we had no relevant information about them since then, so their current status is unknown. These taxa are accepted as species by the databases “The Euro+Med PlantBase” and “Plants of the world online”. These taxa are therefore presented in a separate list (Presumably endemic Ranunculus taxa, Appendix 4). Research on Ranunculus auricomus group in the Pannonicum has been limited to its western edge in recent decades (e.g. Hörandl and Gutermann 1995, 1998 a, b, c, 1999). The species described and presumed endemic to this marginal area are also presented in this list.

Based on the size of the distribution area I distinguished four basic categories of endemic taxa in the Pannonicum: eurychoric endemics distributed rather evenly throughout the whole Pannonicum or in their major part; mesochoric endemics with distributions restricted more or less to the individual subunits (e.g.: Matricum or Bakonyicum); stenochoric endemics distributed only in a particular mountain or lowland range (e.g. Bükk or Nyírség) and microchoric endemics restricted to a (or sometimes two) particular small area (e.g.: the summit of the Szénások or the bog of Moosbrunn).

Taxa selection and their evaluation

This evaluation includes endemic and subendemic taxa reported from the Pannonicum in literature and database. Special attention was paid to taxonomic publications that contain up-to-date information on endemic taxa of vascular plants. Among some taxonomically difficult taxa (e.g. Alchemilla, Chamaecytisus, Festuca, Rubus, Sorbus), I listed only those with existing relevant information in recent taxonomic literature or those commented on by competent experts. The list does not include taxonomically difficult groups for which it has no or insufficient relevant information: Taraxacum (except sect. Palustria), most of the Hieracium and Rubus taxa or Ranunculus auricomus agg. group (latter presented in a separate list). Distribution data came from literature (see Appendix), internet databases (Database of the Czech Flora and Vegetation: https://pladias.cz/en, Vascular plants of Hungary online database: http://floraatlasz.uni-sopron.hu/index.php?lang=en, Flora Croacia Database https://hirc.botanic.hr/fcd/Search.aspx, Red Data Book of the Republic of Bulgaria Digital edition: http://e-ecodb.bas.bg/rdb/en/), herbarium (Hungarian Natural History Museum, Budapest) and from personal communication. For the evaluation of endemism and classification of endemic taxa, comprehensive taxonomic and chorological studies as well as national floras were preferred. The publications, on which the evaluation of endemism was based, are listed in respective tables in the column “Reference” (Appendix 3).

Plant names mostly follow The Euro+Med PlantBase (http://ww2.bgbm.org/EuroPlusMed/query.asp), the remaining names are used according to the current taxonomic literature. The validity of plant names and their taxonomic status were checked also in supranational databases: The Plant List (http://www.theplantlist.org), Plants of the world online (http://www.plant-softheworldonline.org), World Checklist of Selected Plant Families (https://wcsp.science.kew.org). I also considered authors’ opinions published in current national floras and checklists.

Habitat preferences of (sub)endemic taxa

For further studies I examined the occurrence of endemic taxa in various habitat groups and habitats. I distinguished the following basic habitat groups: (Sal) Saline vegetation; (Sand) Steppe, steppe forest on sand; (Loes) Steppe, steppe forest on loess; (Ro) Rock fissures, rock shelters, shallow rocky solis; (Wet) Wetland communities like bogs, marshlands, alluvial meadows; (Xe) Xerophile/dry grasslands (in general) and shrubs; (Me) Mesic hay meadows and pastures; (XeF) Xerophilic mountain forests (oak and oak scrub forests, rocky forests, etc.); (MeF) Mesophilic forest communities (oak-hornbeam and beech forests, riverine forests, etc.).

Habitat preferences of (sub)endemic taxa were evaluated according to the ecological and phytosociological literature (e.g. Soó 1966, 1968, 1970, 1973, 1980), comprehensive studies of selected genera and species, or the knowledge of competent experts. Habitats less characteristic/ordinary of a given taxon are enclosed in parentheses “()” in the table (Appendix 3).

RESULTS

Research on many taxa is ongoing and the results of which may change the lists below. There are some little-known taxa in Pannonicum that may turn out to be endemic. Ornithogalum x degenianum has a hybrid origin but probably not a primary hybrid. The Myosotis taxon found in the southeastern part of the Great Plain is classified recently as M. sicula, but it differs from the plants found in Italy (Király 2009). The Petrosimonia triandra found in Hortobágy seems to be morphologically different from Eastern European plants (Molnár A. and Jakab G. in litt). In other cases, research is already underway but there are no definitive results yet (e.g. Odontarrhena tortuosa subsp. tortuosa – Španiel S. in litt.). In addition, new taxa are expected to be described (e.g. genus Sorbus, Rubus, Taraxacum).

After the revision of endemic status the taxa of vascular plants studied were divided into the following categories: (a) non-endemic taxa (taxa with wider distribution or included in other taxa with wider distribution outside the Pannonicum) (Appendix 1); (b) shared endemic taxa of the Pannonicum and western part of the Carpaticum (Appendix 2); (c) taxa endemic or sub-endemic in the Pannonicum or it’s subunits (Appendix 3), (d) presumably endemic or subendemic Ranunculus taxa (Appendix 4).

Non-endemic taxa

77 taxa were evaluated as endemic to Pannonicum in the literature but are not endemic according to current taxonomic and phytogeographical knowledge (Appendix 1). Most of them belong to synonyms of other taxa with a wider distribution. Many of them have wider non-endemic distribution: Artemisia santonicum subsp. patens, Aster tripolium subsp. pannonicus, Bromus pannonicus, Carduus collinus, Centaurium littorale subsp. uliginosum, Cirsium furiens, Dactylorhiza fuchsii subsp. sooana, Dianthus giganteiformis, Elatine hungarica, Galium austriacum, Knautia arvensis subsp. pannonica, Minuartia frutescens, Pilosella budensis, P. megatricha, Plantago schwarzenbergiana, Polygonum graminifolium, Primula auricula subsp. hungarica, Puccinellia distans subsp. limosa, Rhinanthus borbasii subsp. borbasii, Rorippa sylvestris subsp. kerneri, Rosa facsarii, R. zalana, Scilla bifolia subsp. buekkensis, Seseli osseum. In recent times Tilia, Thymus and Mentha genera have since been processed in detail, resulting in a significant reduction in the number of species (e.g. Thymus: Mártonfi 1997). None of them is currently considered endemic.

The Kitaibela vitifolia has only a few data in the Pannonicum (Tatár 1939), and its main area of distribution is in the Balkans (Tunçkol et al. 2020). This list provisionally includes taxa with unclear taxonomic status. For example, Achillea horanszkyi is probably a primary hybrid, but further research is needed (Dobolyi 1997). The taxonomy of Onosma arenaria is not yet clearly resolved but it appears to have wider non-endemic distribution.

Shared endemic taxa of the Pannonicum and western part of the Carpaticum

Some taxa have a narrow range, but can be found in parts of both the western part of the Carpaticum and the Pannonicum. These are not endemic separately in either of the two above-mentioned phytogeographical regions, but they are worth mentioning due to their narrow distribution area. These five taxa show the Appendix 2.

Erysimum wittmannii subsp . pallidiflorum was considered Pannonian endemic (Soó 1968) but according to recent literature, it also occurs in the Carpaticum (eastern part of Slovakia) (Michalková 2002). Ophrys fuciflora subsp. holubyana was considered Western Carpathians endemic but it also occurs in the Transdanubian Mountains (Molnár V. and Csábi 2021). Dianthus plumarius is called “lumnitzeri” in the literature but according to the latest research (Barina et al. 2020), this is the correct name for a taxon that occurs from Hainburg to Malé Karpaty and Inovec Mts. Further research of taxa previously classified as Dianthus plumarius agg. is required. For more detailed information see Appendix 2.

Endemic or subendemic taxa in Pannonicum

Based on current taxonomic literature, databases and consulting with local experts we identified 143 (73 of them apomicts) taxa endemic or sub-endemic to the Pannonicum (Appendix 3). Only 29 of the taxa mentioned by Tatár (1939) are still considered endemic today. Based on the list, 42 of the vascular plants are species, 29 subspecies (both subspecies of Dianthus serotinus are endemic) and another 73 are apomictic taxa. Most of the latter belong to the genus Sorbus (47 taxa) and Taraxacum (23 taxa). (This is the first compilation to include these in detail.) These taxa are analysed separately.

None of the Pannonian endemics are endemic at the genus or a higher taxonomic level. The Rosaceae has the most (sub)endemic taxa: 51 (but 49 of them apomictic), followed by Asteraceae (35 taxa but 24 of them apomictic) (Table 1). Orchidaceae have relatively few species in the Pannonicum but there is a relatively high rate of endemism among them. All of them belong to the genus Epipactis. Large families without endemics are the Cyperaceae and Lamiaceae. At the genus level, the highest number of endemic taxa is found in Sorbus, Taraxacum, Dianthus and Epipactis.

Table 1

Taxonomic composition of the endemic flora of Pannonicum at the family level. The table shows the number of endemic taxa (ET) per family (showing the number of apomictic taxa in parenthesis)

FamilyET
Rosaceae51 (49)
Asteraceaea35 (24)
Poaceae10
Caryophyllaceae8
Brassicaceae6
Fabaceae6
Orchidaceae6
Ranunculaceae3
Apiaceae (Umbelliferae)2
Crassulaceae2
Linaceae2
Scrophulariaceae2
Asclepiadaceae1
Boraginaceae1
Chenopodiaceae1
Colchicaceae1
Dipsacaceae1
Hyacinthaceae1
Iridaceae1
Paeoniaceae1
Plumbaginaeae1
Rubiaceae1

Occurrence of 70 endemic and subendemic taxa (apomictic taxa were omitted from this analysis) grouped according to the size of their distribution area as follows: eurychoric 19 (27%), mesochoric: 27 (39%), stenochoric: 16 (23%), microchoric: 8 (11%).

Eurychoric species in some cases occur in a wide range of habitats throughout the Pannonicum such as xerophil grasslands (Centaurea scabiosa subsp. sadleriana, Dianthus pontederae, Melampyrum barbatum subsp. barbatum) or different types of forests (Epipactis tallosii). Other species occur in two types of habitats: sand steppes in the lowlands and foothills, and rocky grasslands in the hills (Gypsophila fastigiata subsp. arenaria, Iris arenaria). In other cases, some taxa are associated with only one habitat type, but they are widespread in it (e.g. Festuca vaginata on sands). Most of the endemic taxa are mesochoric. Their distribution range is typically (a part of the) the lowlands (e.g. Suaeda pannonica, Festuca wagneri, Limonium gmelini subsp. hungaricum) or mountain ranges: Transdanubian (exactly: Bakonyicum phytogeographical unit) (Seseli leucospermum) or North Hungarian (Poa pannonica subsp . scabra) (with limited occur-rence in the Visegrád Mts). In some cases, a certain part of Pannonicum (Lotus borbasii in the northeast, Paeonia officinalis subsp. banatica in the south). Stenochoric species occur only in a special area of the lowland (e.g. Crataegus nigra, Melampyrum nemorosum subsp. debreceniense, Pulsatilla flavescens), collin region (Chamaecytisus supinus subsp. pannonicus), or a single mountain region (Draba lasiocarpa subsp. klasterskyi). The most exciting are the microchoric taxa. They occur mainly in rocky grasslands (Festuca vojtkoi, Knautia kitaibelii subsp. tomentella, Linum dolomiticum), sometimes in rocky forests (Hesperis matronalis subsp. vrabelyiana) but even in sandy steppes (Centaurea jankeana) or bogs (Cochlearia macrorrhiza).

In terms of phytogeographical units, the number of their own (or shared with another unit) endemics are as follows (apomictic taxa were omitted from this analysis): Eupannonicum 22 (27), Matricum 8 (13), Bakonyicum 6 (13), Praeillyricum 2 (5), Praenoricum: 0 (1) and Thermenlinie 2(1).

The Eupannonicum has most of its own (sub)endemic taxa. Some occur in both lowlands (Great and Little Plain): Centaurea tauscheri, Cirsium brachycephalum, Dianthus serotinus subsp. serotinus (there are also occurrences in the foothills), Galatella cana, Suaeda pannonica and Artemisia pancicii. (The latter has an interesting distribution area as it lives on two opposite edges of the Eupannonicum.) However, most of them live only in the Great Plain. Within this, most of the (sub)endemic taxa can be found in the Duna–Tisza köze region, especially in the part called Kiskunság. Own endemics and subendemics in this area (often shared with Deliblato Sands or surrounding areas): Colchicum arenarium, Dianthus diutinus, Epipactis bugacensis subsp. bugacensis (the only true endemic), Festuca pseudovaginata, F. wagneri, Sedum urvillei subsp . hillebrandtii, Tragopogon floccosus. The northeastern part of Eupannonicum (Nyírség, Bodrogköz) has two endemics of its own: Melampyrum nemorosum subsp. debreceniense (Nyírség) and Pulsatilla flavescens (Nyírség-Bodrogköz). The following areas also have a (sub)endemic species: Deliblato Sands (Centaurea jankeana), floodplains of the Danube (Crataegus nigra) and floodplains of the Tisza (Armoracia macrocarpa). The Little Plain has only two endemics of its own: Cochlearia macrorrhiza and Puccinellia peisonis. Shared endemics of Eupannonicum and Matricum: Onosma pseudoarenaria subsp. tuberculata, Pulsatilla zimmermanni. Shared endemics of Eupannonicum and Bakonyicum: Gypsophila fastigiata subsp. arenaria, Iris arenaria.

Table 2

Number of (sub)endemics in phytogeographical units. * = without apomictic taxa

Own (shared) endemic (n = 70)*Pannonian (sub)endemic

(n = 70)*
Endemic Sorbus taxa

(n = 47)
Endemic Taraxacum taxa

(n = 23)
All apomictic taxa (n = 73)All (sub)endemic (n = 143)
Eupannonicum22 (27)47 (67%)0232370 (49%)
Matricum8 (13)28 (40%)8 (17%)0937 (26%)
Bakonyicum6 (13)34 (49%)39 (83%)24377 (54%)
Praeillyricum2 (5)22 (31%)08830 (21%)
Praenoricum0 (1)6 (9%)0017 (5%)
Thermenlinie2 (1)7 (10%)0007 (5%)

The Matricum has 8 (sub)endemic taxa of its own. Most of them (6 taxa) can be found in Bükk Mountains which also has two endemics of its own: Hesperis matronalis subsp. vrabelyiana, Sesleria hungarica (the latter has one locality in Gömör–Torna Karst, but it is rather common on the rocky slopes of the Bükk Mts). The second most endemic-rich area is the Gömör–Torna Karst which has one endemics of its own: Draba lasiocarpa subsp. klasterskyi. These two areas share another endemic taxon, the Dianthus praecox subsp. pseudo-praecox. Noccaea jankae and Poa pannonica subsp. scabra are widely distributed across the Matricum, while Festuca vojtkoi have only a few localities. Shared endemics of Matricum and Bakonyicum: Sempervivum matricum (occurring also in Muranska planina Mts) and Ferula sadleriana (the latter has one locality in the Apuseni Carpathians).

The Bakonyicum has 6 endemic taxa of its own. Dianthus serotinus subsp. kitaibelianus and Seseli leucospermum are quite common and occur throughout this range while Centaurea scabiosa subsp. vertesensis is found only in the central part and Sesleria sadleriana (occurring also in Hainburger Berge) lives only in the eastern part of the area. Two taxa have a very limited range only in the Budaihegység or Pilis: Linum dolomiticum, Knautia kitaibelii subsp. tomentella. Shared endemics of Bakonyicum and Praeillyricum is Vincetoxicum pannonicum.

The Praeillyricum has only 2 endemic taxa of its own. Chamaecytisus supinus subsp. pannonicus occurs in the northeastern hilly part of the area, while Epipactis mecsekensis occurs in the eastern part of the Mecsek Mountains. The largest population of Paeonia officinalis subsp. banatica lives in the Kelet-Mecsek, but can also be found in some localities on the southeastern edge of the Eupannonicum. Chamaecytisus heuffelii occurs in the Mecsek (Praeillyricum) in Deliblat (Eupannonicum) and in the Iron Gate Gorge (Southern-Carpathians).

The Thermenlinie area has 2 endemic taxa of its own: Centaurea scabiosa subsp. badensis, Dianthus plumarius subsp. neilreichii. Shared endemics of Thermenlinie and Praenoricum is Festuca stricta subsp. stricta.

The number of Pannonian (sub)endemic taxa (apomictic taxa were omitted from this analysis) in different phytogeographical units is as follows: Eupannonicum 47 (67%), Bakonyicum 34 (49%), Matricum 28 (40%), Praeillyricum 22 (31%), Praenoricum 6 (9%) and Thermenlinie area 7 (10%).

Five endemic taxa occur in the area between the Drava and the Sava river, which can be considered a transitional area from a phytogeographical point of view. These are the following: Achillea asplenifolia, Dianthus collinus subsp. c ollinus, D. pontederae, Epipactis nordeniorum, Melampyrum barbatum subsp . barbatum. They are quite sporadic here.

Occurrence of 47 endemic Sorbus taxa grouped according to the size of their distribution area as follows: eurychoric 0, mesochoric: 6 (13%), stenochoric: 18 (38%), microchoric: 23 (49%). Only six Sorbus taxa have mesochoric distribution, five of which live in the North Hungarian Mountains and another one in the Transdanubian Mountains. Most of the taxa have microchoric distribution. Many species occur in a single mountain gorge, summit, or northern slope of the valley. Endemic Sorbus taxa occur only in the Transdanubian Mountains (Bakonyicum: 39 taxa) and in the North Hungarian Mountains (Matricum: 8 taxa). The most diverse areas are Vértes (16 taxa), Bakony (14 taxa) and Gömör-Torna Karst (8 taxa).

The exact distribution of endemic Taraxacum species is little known, especially in Hungary, Serbia and Romania. Most of the records of the species are based on (sometimes old) herbarium specimens. Most of the plants observed in the field were identified as T. palustre agg. (e.g. Bartha et al. 2021). Based on our current knowledge there are only two microcoric species among them (T. catenatum and T. limosicola). Most of them are steno-, meso- or eurychoric. They typically occur in lowlands and valleys. The main distribution area of endemic Taraxacum species is the Eupannonicum. The records from Praeillyricum came from wetlands in the southern part of the Lake Balaton area.

The other three apomictic taxa are stenochoric (Alchemilla hungarica, Hieracium kossuthianum) or mesochoric (Rubus balatonicus). The latter two occur in the Bakonyicum (Rubus balatonicus lives in the western and central parts of this area while Hieracium kossuthianum occurs only on the eastern margin of the area) and the former in the Matricum.

Habitat preferences of (sub)endemic taxa

Most endemic (not apomictic) plants occur in rocky (27%) or sandy (20%) habitats (Fig. 2). Together with the taxa that occur in both habitats, a total of 53% of the plants studied live here. Most of them are on calcareous soil. Only two taxa occur in acidic soils in both sandy (Melampyrum nemorosum subsp. debreceniense, Pulsatilla flavescens) and rocky (Festuca vojtkoi, Sempervivum matricum) habitats, but the latter can also be found on calcareous soils. Another 9 taxa (13%) live in different types of xerophilic grasslands (in general) or shrubs and a further 2 (3%) mainly on rocks, but often also in rocky forests. Most of the (sub)endemic taxa (54 of them, 77%) live in dry habitats mentioned so far. There are only 2 species in wetlands, 4 in saline vegetation, and 2 in saline meadows. There is only one subspecies among them, so it seems that most endemics have developed in these habitats for a long time.

Fig. 2
Fig. 2

Habitat preferences of Pannonian (sub)endemic taxa (without apomictic taxa). Sal = saline vegetation; Sand = steppe, steppe forest on sand; Loes = steppe, steppe forest on loess; Ro = rocks, rocky grasslands; Wet = bogs, alluvial meadows and other wetland communities; Xe = xerophile/dry grasslands (in general) and shrubs; XeF = xerophilous mountain forests (oak and oak scrub forests, rocky forests, etc.); MeF = mesophilic forest communities (oak-hornbeam and beech forests, riverine forests, etc.)

Citation: Acta Botanica Hungarica 65, 1-2; 10.1556/034.65.2023.1-2.8

The extraordinary richness of rocks and rocky grasslands is not surprising, but the extraordinary richness of sandy habitats is interesting. Within the Pannonicum, there are significant differences in vegetation (and endemic species) on sandy soils. One of the main sandy area is situated in the southwestern part of Transdanubia (Belső-Somogy). Its climate is relatively humid (average annual rainfall 700–750 mm) (Bihari et al. 2018). The natural vegetation here is the forest (oak, oak-hornbeam, beech), and sand steppes are very rare and fragmented (Zólyomi 1989). This area has no endemic taxa of its own and only two of the endemic taxa of the Pannonian sand occur here (Dian-thus serotinus subsp. serotinus, Festuca vaginata). Another important sandy area (this sand is acidophilus) is located in the northeastern part of the Pannonicum (Nyírség and some surrounding areas). The climate is drier here (average annual rainfall 550–650 mm) (Bihari et al. 2018). The main natural vegetation is steppe and forest-steppe (Zólyomi 1989). This area has two endemic taxa of its own (Pulsatilla flavescens and Melampyrum nemorosum subsp. debreceniense), and many other endemics can be found here (e.g. Dianthus serotinus subsp. serotinus, Festuca vaginata, Iris arenaria). The most important sand vegetation is found along the Danube, including its wider surroundings from southern Moravia to Deliblat. There are several sand areas here, which are more or less separated from each other. They are found in the hottest and driest areas of the Pannonicum. The average annual precipitation is 450–650 mm (Bihari et al. 2018, Milovanović et al. 2017, Tolasz et al. 2007). The main potential natural vegetation is steppe and forest-steppe (Chytrý 2012, Niklfeld 1973, Schratt-Ehrendorfer 2008, Zólyomi 1989). The most endemic-rich area is in the Duna–Tisza köze region, which is in the middle of the Pannonicum. This area, whose soil is mostly calcareous sand, has only one endemic taxon of its own (Epipactis bugacensis subsp. bugacensis), but it is the centre of the distribution area of many endemics. Similar but not so species-rich sand flora can be found in the Mezőföld (on the opposite side of the Danube), and in the eastern half of the Little Plain (on both sides of the Danube). Farther away, on the sand steppes of South Moravia (the northwestern part of Pannonicum), only a few endemics can be found. The Deliblat, located in the southeastern corner of the Pannonicum, is also rich in endemics. This area has one endemic taxon of its own (Centaurea jankeana). Some endemic species appear on the sand dunes of the lower part of the Danube, outside of Pannonicum, but not far from it.

These “Pannonian flora islands” have more Pannonian endemics than on the sands of South Moravia.

Only two endemic subspecies (Chamaecytisus supinus subsp. pannonicus, Cirsium boujartii subsp. boujartii) are restricted to the species-rich Pannonian loess steppes. Some authors (Fekete et al. 2014) also list the Noccaea jankae here, but this species often occurs in other habitats as well (Illyés and Bölöni 2007). In loess steppes, however, there are plenty of (sub-)Pontic-Pannonian elements. Of course, there are endemics in loess steppes as well, but these have fallen into the “xerophilous grasslands” category here.

Xerophilic mountain, sometimes grassy mosaic forests have only 4 (sub) endemic taxa (6%). Most of them were not widespread in Pannonicum. Some taxa occur only in the north (Chamaecytisus virescens), south (Paeonia officinalis subsp. banatica) or northeast (Galium abaujense). Mesophilic forest communities have 8 (sub)endemics (11%). Most of them are Epipactis species. Habitat grouping does not show, but some taxa (Cirsium brachycephalum, Melampyrum barbatum subsp. barbatum, Noccea jankae) also occur in segetal weed communities.

Among apomictic taxa (not listed in the table) most of the endemic Sorbus species prefer xerophilic mountain forests (oak and oak scrub forests, rocky forests), but some also live in mesophilic forests. Endemic Taraxacum species live in wet (sometimes saline) meadows and other wetland communities. The other three species live in rocks or edges of the xerophilic mountain forests (Hieracium kossuthianum, Rubus balatonicus) or mountain mesic hay meadows and pastures (Alchemilla hungarica).

DISCUSSION

For the Pannonicum, our revised list of endemic and subendemic taxa contains 143 vascular plants (73 of them apomicts). Tatár (1939) mentions 55 taxa (without apomicts) of which only 29 (53%) are still considered endemic today. The other 26 taxa have either changed their taxonomic classification or have a wider (non-endemic) range of distribution in light of recent research. Subsequent publications (Horváth et al. 1995, Fekete et al. 2014, Simon et al. 1992) mention an additional 22 species that we do not consider endemic today. These compilations of endemic vascular plants do not list Sorbus taxa in detail. (Appendix 1 also includes species mentioned in other literature, e.g. Soó 1933, 1964 a). Compared to previous lists, in this study a high number of (sub)endemic taxa is reported as endemic for the first time. This increase in the number of taxa is the result of current taxonomic and chorological research. The taxonomic status and/or distribution of many plants have been resolved in recent decades. (At the same time, many taxonomic questions remain unresolved and the exact distribution of some species is not known even today, therefore further investigations are necessary.) In addition, the (Hungarian) lists of Pannonian endemics of recent decades are based on the borders of Hungary, so these lists do not include species that occur outside of Hungary (e.g. Artemisia pancicii, Cochlearia macrorrhiza, Draba lasiocarpa subsp. klasterskyi).

The proportion of stenochoric taxa (without apomicts) is more than one and a half times higher than in the Carpathians, but together with the apomictic genera, it is the same (see Kliment et al. 2016). The proportion of microchoric taxa in Pannonicum is about three and four times higher (with and without apomicts) than in the Carpathians.

Although inland endemic diversity centres are mainly found in the mountains, the area richest in endemic species (excluding apomictic taxa) in Pannonicum among the five phytogeographical units is a lowland region (Eupannonicum). This area has the most endemics of its own and the highest number of Pannonian (sub)endemic taxa. Within this area, most of the (sub) endemics can be found in the Duna–Tisza köze region, especially in the part called Kiskunság. It is located in the middle of the Pannonicum. Its natural vegetation is mainly sandy forest-steppe but the proportion of saline vegetation is also significant. This area is bordered by riparian forests to the east (Tisza river) and west (Duna river). The high number of endemic species can be explained by the Amazonas model according to Borhidi (2004). Based on this theory, it is probable that during the Holocene (more likely during the Pleistocene) warming and especially during the warm and rainy periods, the flow of the Danube may have been several times larger than now and its builder-destroyer work modify the vegetation of the Kiskunság similarly, what today the Amazonas does in the Amazonas Basin. As a result of this, not only a whole series of semi-desert and steppe endemics emerged and isolated, but the floodplain also created its own endemism. In a smaller volume but a similar process took place in the floodplain of the Tisza river, where endemic taxa were formed in a similar way on the sands of Nyírség.

Together with apomictic taxa, most endemics are found in the Transdanubian Mountains (Bakonyicum) (77 taxa, 54% of Pannonian (sub)endemics). This mostly calcareous (limestone and dolomite) bedrock mountain range is actually an island rising out of the lowlands, which connected in a narrow strip to the mostly silicate bedrock North Hungarian Mountains (Matricum) in the northeast and to the Praeillyricum in the southwest. Therefore, Carpathian flora elements from the north and Illyrian from the south may have appeared in the area. Partly as a result of this “flora meeting” a number of apomictic Sorbus taxa have evolved (through hybridisation of parent species of northern and southern origin) (Borhidi 2004). The geographically distant Budai-hegység (mountains) (East Bakonyicum) and the Villányi-hegység (hills) (Southeast Praeillyricum) may have had a closer floristic relationship in the past based on their shared endemic species (Vincetoxicum pannonicum). There may have been a similar connection between the Budai-hegység and the Hainburger Gebirge (hill) (Northeast Austria) (Sesleria sadleriana) or Trans-danubian Mts and the Thermenlinie area (Thalictrum minus subsp. majus) in the past.

The third richest area in terms of Pannonian (sub)endemics is the North Hungarian Mountains (Matricum), which is separated from the Carpathians by river valleys for a longer part. Their endemic diversity centers are Bükk Mts and Gömör–Torna Karst. Bükk has the highest diversity. It is a relatively high (800–900 m) calcareous island surrounded by silicate mountains and lowlands. The Gömör–Torna Karst is connected to the calcareous mountains of the Carpathians.

The number of Pannonian (sub)endemics is still significant in the Praeillyricum. Most of them are eurychoric which are more or less widespread in the Pannonicum. Some southern-distributed taxa are typical here that do not occur in the northern or central part of the Pannonicum (Chamaecytisus heuffelii, Paeonia officinalis subsp. banatica).

Praenoricum and the Thermenlinie are transitional areas with very few Pannonian (sub)endemics. Almost the same number of Pannonian taxa occur in the transitional region between the Drava and the Sava river. From this point of view, these areas are similar, but in terms of the vascular flora, the former two are transitioning to Alpicum and the latter to Illyricum.

In terms of habitat preferences for (sub)endemics, most plants (apo mictic taxa were omitted from this analysis) occur in rocky or sandy habitats. The extraordinary richness of rocks and rocky grasslands is also reported by authors of studies on the surrounding Carpathians (Kliment et al. 2016), Alps (Essl et al. 2009) and the Dinaric Mountains (Nikolić et al. 2020), so this is not surprising in the Pannonicum either.

However, the extraordinary richness of sandy habitats is interesting. While in the Czech Republic only two endemics occurring in Bohemian sandy habitats (Kaplan 2012), in the Pannonicum it is one of the most endemic-rich areas. The sandy vegetation has a large extent here and appears under varied soil (e.g. calcareous and acidophilus) and climatic conditions. It is important to mention that the distribution of sandy soils (arenosols) in Europe is dispersed-disjunct. The sandy areas of Pannonicum are far from the others and/or there are geographical barriers (e.g. mountains) between them (Jones et al. 2005). Moreover, they are also separated within the Pannonicum. The flora of sandy habitats seems developed in isolation from those outside the Carpathian Basin, but sometimes also from each other (e.g. Kiskunság and Nyírség). However, the former connection with Eastern European steppes is obvious due to morphologically similar sister species like Dianthus diutinus and D. bessarabicus, D. platyodon, or Colchicum arenarium and C. fominii, or Iris arenaria and I. pineticola, I. humilis, or Onosma pseudoarenaria subsp. tuberculata and subsp. pseudoarenaria (the latter in the Transylvanian Basin). The saline habitats of the Carpathian Basin probably developed in a similarly isolated way. However, they are less species-rich.

The species-rich Pannonian lowland loess steppes have only one endemic taxon of their own (the other endemic subspecies of loess live in the collin region of Tolna and Somogy). In loess steppes, however, there are plenty of (sub-)Pontic-Pannonian elements. Loess soils have a more or less continuous belt in a large part of Europe. The loess regions of the Pannonicum are connected to the large and continuous loess region of Eastern Europe (Lehmkuhl et al. 2021) (the Carpathian mountains become narrower towards the southwestern edge). The Pannonian loess steppes do not seem to have separated enough from the Eastern Europeans to develop their own endemic species, or the taxa formed here have now spread to other types of dry grasslands (see endemics of xerotherm habitats). It is also conceivable that as only 3% of loess grasslands have survived due to human activity (Horváth et al. 2011, Kelemen 1997), endemic taxa have already become extinct.

Xerophilic mountain forests (oak and oak scrub forests, rocky forests) are very important for apomictic Sorbus taxa (they make up nearly a third of endemics) as well as wet meadows where (the known) endemic Taraxacum species live.

Acknowledgements

I am grateful to the following colleagues for their consultations and hardly accessible literature: Éva Andrik (Hu), Sándor Barabás (Hu), Zoltán Barina (Hu), Norbert Bauer (Hu), Sándor Bérces (Hu), Miklós Csábi (Hu), András István Csathó (Hu), János Csiky (Hu), László Demeter (Hu), Daniel Dítě (Sk), Zuzana Dítě (Sk), Konstantin Dobolyi Z. (Hu), Sándor Farkas (Hu), Gábor Fekete † (Hu), Christian Gilli (Au), Gusztáv Jakab (Hu), Viktor Kerényi-Nagy (Hu), Balázs Kevey (Hu), Pál Kézdy (Hu), Gergely Király (Hu), Vladislav Kolarčik (Sk), Martin Kolnik (Sk), András Kun (Hu), Attila Lengyel (Hu), Gábor Mészáros (Hu), Orsolya Mile (Hu), Attila Molnár (Hu), Attila Molnár V. (Hu), Csaba Molnár (Hu), Alexander Mrkvicka (Au), József Nagy (Hu), Csaba Németh (Hu), Harald Niklfeld (Au), Gábor Papp (Hu), Dániel Pifkó (Hu), Ranko Perič (Srb), Milica Rat (Srb), András Schmotzer (Hu), Tibor Simon † (Hu), Lajos Somlyay (Hu), Stanislav Španiel (Sk), Gábor Sramkó (Hu), József Sulyok (Hu), Attila Takács (Hu), István Zsolt Tóth (Hu), Róbert Vidéki (Hu), András Vojtkó (Hu), Wolfgang Willner (Au). Thanks to the unknown reviewers for their useful comments. Last but not least, I would like to thank my family for allowing me to spend so much time researching the endemic plants of Pannonicum.

REFERENCES

  • Adamović, L. (1904): Die Sandsteppen Serbiens. –Bot. Jahrb. 33: 555617.

  • Anon. (2021): European Commission, Environment 2000: Natura 2000–Pannonian bio-geographical region. URL: http://ec.europa.eu/environment/nature/natura2000/sites_hab/biogeog_regions/index_en.htm#pannonian (Download: 19/12/2021)

    • Search Google Scholar
    • Export Citation
  • Barina, Z., Somogyi, G. and Pifkó, D. (2020): Typification of names in the Dianthus plumarius group in the Carpatho-Pannonian region.–Taxon 69(1): 161169.

    • Search Google Scholar
    • Export Citation
  • Bartha, D., Bán, M., Schmidt, D. and Tiborcz, V. (2021): Magyarország edényes növényfajainak online adatbázisa (http://floraatlasz.uni-sopron.hu). – Soproni Egyetem, Erdőmérnöki Kar, Növénytani ésTermészetvédelmi Intézet.

    • Search Google Scholar
    • Export Citation
  • Bihari, Z., Babolcsai, Gy., Bartholy, J., Ferenczi, Z., Gerhátné Kerényi, J., Haszpra, L., Homokiné Ujváry, K., Kovács, T., Lakatos, M., Németh, Á., Pongrácz, R., Putsay, M., Szabó, P. and Szépszó, G. (2018): Éghajlat. (Climate). – In: Kocsis, K. (ed.): Magyarország Nemzeti Atlasza, Természeti környezet. MTA CSFK Földrajztudományi Intézet, Budapest.

    • Search Google Scholar
    • Export Citation
  • Borbás, V. (1879): Budapestnek és környékének növényzete. (The vegetation of Budapest and its surroundings). – Magyar Királyi Egyetemi Könyvnyomda, Budapest.

    • Search Google Scholar
    • Export Citation
  • Borbás, V. (1884): A magyar homokpuszták növényzete vonatkozással a homokkötésre. (The vegetation of the Hungarian sand steppes in relation to sand binding). –Term. tud. Közl. 16: 145167.

    • Search Google Scholar
    • Export Citation
  • Borbás, V. (1896): Vasvármegye növénygeografiai viszonyai. (Geographia plantarum Comitatus Castriferrei). – In: Sziklay, J. and Borovszky, S. (eds): Magyarország vármegyéi és városai, Vasvármegye. Apollo, Budapest, pp. 497542.

    • Search Google Scholar
    • Export Citation
  • Borbás, V. (1900): A Balaton tavának és partmellékének növényföldrajza és edényes növényzete. (Phytogeography and vascular plants of Lake Balaton and its shore). – A Balaton Tud. Tanulm. Eredm. II/2, Budapest.

    • Search Google Scholar
    • Export Citation
  • Borbás, V. (1905): Növényvilág. (Flora and vegetation). – In: György, A. (ed.): A Föld és népei V: Magyarország. Franklin-társulat, Budapest, pp. 99133.

    • Search Google Scholar
    • Export Citation
  • Borhidi, A. (2004): Kerner és Rapaics szellemi örökségének tükröződése Magyarország növényföldrajzának mai megítélésében, különös tekintettel az Ősmátra-elméletre [The reflection of the intellectual heritage of Kerner and Rapaics in today’s assessment of the plant geography of Hungary, with special regard to the Ősmátra Theory].–Tilia 12: 199226.

    • Search Google Scholar
    • Export Citation
  • Bruchmann, I. (2011): Plant endemism in Europe: spatial distribution and habitat affinities of endemic vascular plants. – Dissertation, University of Flensburg.

    • Search Google Scholar
    • Export Citation
  • Chytrý, M. (2012): Vegetation of the Czech Republic: diversity, ecology, history and dynamics.–Preslia 84: 427504.

  • Dobolyi, K. (1997): Gondolatok az Achillea horanszkyi Ujhelyi taxonómiai helyzetéről. (Comments on the taxonomic status of Achillea horanszkyi Ujhelyi).–Kitaibelia 2(2): 177178.

    • Search Google Scholar
    • Export Citation
  • Essl, F., Staudinger, M., Stohr, O., Schratt-Ehrendorfer, L., Rabitsch, W. and Nicklfeld, H. (2009): Distribution patterns, range size and niche breadth of Austrian endemic plants. –Biol. Conservation 142: 25472558.

    • Search Google Scholar
    • Export Citation
  • Fekete, G., Király, G. and Molnár, Zs. (2016): Delineation of the Pannonian vegetation region.–Community Ecol. 17(1): 114124.

  • Fekete, G., Molnár, Zs., Magyari, E., Somodi, I. and Varga, Z. (2011): Egyediség, szabályszerűség és deviáció a Pannon régió vegetációjának példáján. –Bot. Közlem. 98: 2959.

    • Search Google Scholar
    • Export Citation
  • Fekete, G., Molnár, Zs., Magyari, E., Somodi, I. and Varga, Z. (2014): A new framework for understanding Pannonian vegetation patterns: regularities, deviations and uniqueness.–Community Ecol. 15(1): 1226.

    • Search Google Scholar
    • Export Citation
  • Fukarek, P. (1979): Die Pfanzengeographische Abgrenzung des illyrischen vom moesischen Gebiet. Phytocoenologia 6: 434438.

  • Futák, J. (1972): Endemity. – In: Lukniš, M. (ed.): Slovensko 2: Príroda. Obzor, Bratislava, pp. 421431.

  • Futák, J. (1984): Fytogeografické Členenie. (Phytogeographical Classification). – In: Bertová, L. (ed.): Flóra Slovenska IV/1. VEDA, Bratislava, 449 pp.

    • Search Google Scholar
    • Export Citation
  • Grisebach, A. (1872): Die Vegetation der Erde nach ihrer klimatischen Anordnung: ein Abriss der vergleichenden Geographie der Pflanzen. Vol. 1. – Engelmann, Leipzig.

    • Search Google Scholar
    • Export Citation
  • Hobohm, C. (ed.) (2014): Endemism in vascular plants. – Springer, Berlin.

  • Hohla, M., Diewald, W. and Király, G. (2015): Limonium gmelini–eine Steppenpflanze an österreichischen Autobahnen sowie weitere Neuigkeiten zur Flora Österreichs.–Stapfia 103: 127150.

    • Search Google Scholar
    • Export Citation
  • Horváth, A., Illyés, E., Molnár, Zs., Molnár, Cs., Csathó, A. I., Bartha, S., Kun, A., Türke, I. J., Bagi, I. and Bölöni, J. (2011): H5a – Löszgyepek, kötött talajú sztyeprétek. (Closed steppes on loess). – In: Bölöni, J., Molnár, Zs. and Kun, A. (eds): Magyarország élőhelyei. Vegetációtípusok leírása és határozója, ÁNÉR 2011. MTA Ökológiai és Botanikai Kutatóintézete, Vácrátót, pp. 174181.

    • Search Google Scholar
    • Export Citation
  • Horváth, F., Dobolyi, Z. K., Morschauser, T., Lőkös, L., Karas, L. and Szerdahelyi, T. (1995). FLÓRA adatbázis 1.2, taxonlista és attribútum-állomány. (Flora database). – MTA Ökológiai és Botanikai Kutatóintézete and MTM Növénytár, Vácrátót.

    • Search Google Scholar
    • Export Citation
  • Hörandl, E. (2008): Schlüssel für die Kleinarten der Arten-Gruppe Gold-H., Goldschopf-H / R. auricomus agg. In: Fischer, M. A., Oswald, K. and Adler, W. (eds): Exkursions-flora für Österreich, Liechtenstein und Südtirol. 3. Aufl. – Land Oberösterreich, Biologiezentrum der Oberösterr. Landesmuseen, Linz, pp. 288299.

    • Search Google Scholar
    • Export Citation
  • Hörandl, E. and Gutermann, W. (1995): Die Bearbeitung der Ranunculus auricomusGruppe für die “Flora von Österreich”–ein Werkstattbreicht. –Fl. Austr. Novit. 2: 1227.

    • Search Google Scholar
    • Export Citation
  • Hörandl, E. and Gutermann, W. (1998a): Zur Kenntnis des Ranunculus auricomus-Komplexes in Österreich: Die Arten der R. phragmiteti-und R. indecorus-Gruppe. –Phyton 37: 263320.

    • Search Google Scholar
    • Export Citation
  • Hörandl, E. and Gutermann, W. (1998b): Der Ranunculus auricomus-Komplex in Öster-reich 1. Methodik; Gruppierung der mitteleuropäischen Sippen–Bot. Jahrb. Syst., Pflanzengesch. Pflanzengeogr. 120: 144.

    • Search Google Scholar
    • Export Citation
  • Hörandl, E. and Gutermann, W. (1998c): Der Ranunculus auricomus-Komplex in Öster-reich 2. –Bot. Jahrb. Syst., Pflanzengesch. Pflanzengeogr. 120: 545598.

    • Search Google Scholar
    • Export Citation
  • Hörandl, E. and Gutermann, W. (1999): Der Ranunculus auricomus-Komplex in Österreich 3. –Bot. Jahrb. Syst., Pflanzengesch. Pflanzengeogr. 121: 99138.

    • Search Google Scholar
    • Export Citation
  • Hurdu, B. I., Puşcaş, M., Turtureanu, P. D., Niketić, M. Vonica, G. and Coldea, G. (2012): A critical evaluation of Carpathian endemic plant taxa from the Romanian Carpathians. –Contrib. Bot. 47: 3947.

    • Search Google Scholar
    • Export Citation
  • Illyés, E. and Bölöni, J. (eds) (2007): Lejtősztyepek, löszgyepek és erdőssztyeprétek Magyarországon. (Slope steppes, loess steppes and forest steppe meadows in Hungary). – MTA Ökológiai és Botanikai Kutatóintézet, Budapest, 236 pp.

    • Search Google Scholar
    • Export Citation
  • Jávorka, S. (1924 –1925): Magyar Flóra. (Hungarian flora). – Studium, Budapest.

  • Jones, A., Montanarella, L. and Jones, R. (eds) (2005): Soil atlas of Europe. – European Soil Bureau Network, European Commission. https://esdac.jrc.ec.europa.eu/content/soil-atlas-europe

    • Search Google Scholar
    • Export Citation
  • Kaplan, Z. (2012): Flora and phytogeography of the Czech Republic.–Preslia 84: 505573.

  • Kelemen, J. (ed.) (1997): Irányelvek a füves területek természetvédelmi szempontú kezeléséhez. (Guidelines for the conservation management of grasslands). – A KTM Természetvédelmi Hivatalának tanulmánykötetei 4. TermészetBÚVÁR Alapítvány Kiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Kerner, A. (1863): Das Pflanzenleben der Donauländer. – Wagner’sche Universitäts-Buchhand-lung, Innsbruck.

  • Kerner, A. (1886): Az osztrák-magyar monarchia növényvilága. (The flora of the Austro-Hungarian monarchy). In: Az Osztrák-Magyar Monarchia írásban és képben 1. kötet. Magyar Királyi Államnyomda, Budapest. https://regi.tankonyvtar.hu/hu/tartalom/tkt/osztrak-magyar/ch02s05.html

    • Search Google Scholar
    • Export Citation
  • Kerner, A. and Wettstein, R. (1888): Florenkarte von Österreich-Ungarn. – Hölzel, Wien.

  • Király, G. (2001): A Fertőmelléki-dombsor vegetációja. (Vegetation of the Fertőmellékidombsor). –Tilia 10: 181357.

  • Király, G. (ed.) (2009): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). – Aggteleki Nemzeti Park Igazgatóság, Jósvafő.

    • Search Google Scholar
    • Export Citation
  • Kirschner, J. and Štěpánek, J. (1998): A monograph of Taraxacum sect. Palustria. – Institute of Botany, Academy of Sciences, Czech Republic.

    • Search Google Scholar
    • Export Citation
  • Kliment, J. (1999): Komentovaný prehľad vyšších rastlín flóry Slovenska, uvádzaných v literatúre ako endemické taxóny. (Annotated survey of the vascular plants of Slovak flora recorded in literature as endemic taxa).–Bull. Slov. Bot. Spoločn. 21(4): 1434.

    • Search Google Scholar
    • Export Citation
  • Kliment, J., Turis, P. and Janišová, M. (2016): Taxa of vascular plants endemic to the Carpathian Mts.–Preslia 88: 1976.

  • Kocián, P., Danihelka, J., Lengyel, A., Chrtek, J. and Ducháček, M. (2016): Limonka Gmelinova (Limonium gmelinii) na dálnicích České republiky. (Limonium gmelinii on motorways of the Czech Republic).–Acta Rerum Nat. 19: 16.

    • Search Google Scholar
    • Export Citation
  • Lehmkuhl, F., Nett, J. J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antione, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S. B., Obreht, I., Sümegi P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J. and Hambach, U. (2021): Loess landscapes of Europe. Mapping, geomorphology, and zonal differentiation. –Earth-Science Reviews 215. https://www.sciencedirect.com/science/article/pii/S0012825220305420

    • Search Google Scholar
    • Export Citation
  • Lubarda, B., Stupar, V., Milanović, Đ. and Stevanović, V. (2014): Chorological characterization and distribution of the Balkan endemic vascular flora in Bosnia and Herzegovina.–Bot. Serbica 38(1): 167184.

    • Search Google Scholar
    • Export Citation
  • Marinček, L. (1995): Contribution to demarcation and phytogeographic division of the Illyrian Floral Province, based on vegetation and flora.–Gortiana 16: 99124.

    • Search Google Scholar
    • Export Citation
  • Mártonfi, P. (1997): Nomenclatural survey of the genus Thymus sect. Serpyllum from Carpathians and Pannonia. –Thaiszia 7: 111181.

  • Meusel, H., Jäger, E. and Weinert, E. (1965): Vergleichende Chorologie der Zentraleuropäischen Flora, Band 1. Text. – Gustav Fischer Verlag, Jena.

    • Search Google Scholar
    • Export Citation
  • Michalko, J., Magic, D., Berta, J., Rybníček, K. and Rybníčková, E. (1986): Geobotanická mapa ČSSR slovenská socialistická republika. (Geobotanical map of C.S.S.R. Slovak Socialist Republic). – Veda, Bratislava, 165 pp., 57 Figs.

    • Search Google Scholar
    • Export Citation
  • Michalková, E. (2002): Erysimum L. – In: Goliašová, K. and Šípošová, H. (eds): Flóra Slovenska V/4. Veda, Bratislava, pp. 182226.

    • Search Google Scholar
    • Export Citation
  • Milovanović, B., Schuster, P., Radovanović, M., Vakanjac, V. R. and Schneide, C. (2017): Spatial and temporal variability of precipitation in Serbia for the period 1961–2010.–Theor. Appl. Climatol.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Molnár V. A. and Csábi, M. (2021): Magyarország orchideái. (Orchids of Hungary). – Debreceni Egyetem TTK Növénytani Tanszék, Debrecen.

    • Search Google Scholar
    • Export Citation
  • Molnár, Zs., Király, G., Fekete, G., Aszalós, R., Barina, Z., Bartha, D., Biró, M., Borhidi, A., Bölöni, J., Czúcz, B., Csiky, J., Dancza, I., Dobor, L., Farkas, E., Farkas, S., Horváth, F., Kevey, B., Lőkös, L., Magyari, E., Molnár V. A., Németh, Cs., Papp, B., Pinke, Gy., Schmidt, D., Schmotzer, A., Solt, A., Sümegi, P., Szmorad, F., Szurdoki, E., Tiborcz, V., Varga, Z. and Vojtkó, A. (2018): Növényzet. (Vegetation). – In: Kocsis, K. (ed.): Magyarország Nemzeti Atlasza, Természeti környezet. MTA CSFK Földrajztudományi Intézet, Budapest.

    • Search Google Scholar
    • Export Citation
  • Mráz, P., Barabas, D., Lengyelová, L., Turis, P., Schmotzer, A., Janišová, M. and Ronikier, M. (2016): Vascular plant endemism in the Western Carpathians: spatial patterns, environmental correlates and taxon traits. –Biol. J. Linn. Soc. 119(3): 630648.

    • Search Google Scholar
    • Export Citation
  • Niklfeld, H. (1964): Zur xerothermen Vegetation im Osten Niederösterreichs. –Verh. Zool.-Bot. Ges. Wien 103/104: 152181.

  • Niklfeld, H. (1973): Natürliche Vegetation. 1:2000000. – In: Atlas der Donauländer. Deuticke, Wien.

  • Niklfeld, H. (1993): Pflanzengeographische Charakteristik Österreichs. – In: Mucina, L., Grab-herr, G. and Ellmauer, T. (eds): Die Pflanzengesellschaften Österreichs. Teil I., Gustav Fischer Verlag, Jena, pp. 4375.

    • Search Google Scholar
    • Export Citation
  • Nikolić, T., Fois, M. and Milašinović, B. (2020): The endemic and range restricted vascular plants of Croatia: diversity, distribution patterns and their conservation status.–Phytotaxa 436(2).

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Novikov, A. and Hurdu, B. (2015): A critical list of endemic vascular plants in the Ukrainian Carpathians. –Contrib. Bot. 50: 4391.

    • Search Google Scholar
    • Export Citation
  • Pančić, J. (1863): Arena mobilis in Serbia ejusque flora. (Flora of the sanddunes in Serbia). – Belgrad.

  • Petrova, A. (ed.) (2006): Atlas of Bulgarian endemic plants. – Gea-Libris, Sofia.

  • Piękoś-Mirkowa, H. and Mirek, Z. (2003): Endemic taxa of vascular plants in the Polish Carpathians. –Acta Soc. Bot. Polon. 72: 235242.

    • Search Google Scholar
    • Export Citation
  • Pócs, T. (1981): Magyarország növényföldrajzi beosztása. (Phytogeographical division of Hungary). – In: Hortobágyi, T. and Simon, T. (eds): Növényföldrajz, társulástan és ökológia. Nemzeti Tankönyvkiadó, Budapest, pp. 120155.

    • Search Google Scholar
    • Export Citation
  • Rapaics, R. (1910): Magyarország növényföldrajzi tagozódása. (Phytogeographical division of Hungary). –Pótfüz. Term.tud. Közl. 97: 2441.

    • Search Google Scholar
    • Export Citation
  • Rapaics, R. (1918): Az Alföld növényföldrajzi jelleme. (The phytogeographical character of the Great Plain).–Erd. Kísérletek 20: 1164.

    • Search Google Scholar
    • Export Citation
  • Schratt-Ehrendorfer, L. (2008): Die Pflanzenwelt der Steppen Niederösterreichs: Flora und Vegetation, Standortsvielfalt und Gefährdung. – In: Wiesbauer, H. (ed.): Die Steppe lebt. Felssteppen und Trokkenrasen in Niederösterreich. Amt der NÖ Landesregierung, Abteilung Naturschutz, St. Pölten, pp. 5986.

    • Search Google Scholar
    • Export Citation
  • Šefferová Stanová, V., Vajda, Z. and Janák, M. (2008): Management of Natura 2000 habitats. 6260 *Pannonic sand steppes. – European Commission.

    • Search Google Scholar
    • Export Citation
  • Sennikov, A. and Kurtto, A. (2017): A phylogenetic checklist of Sorbus s. l. (Rosaceae) in Europe. –Mem. Soc. Fauna Flora Fenn. 93: 178.

    • Search Google Scholar
    • Export Citation
  • Simon, T. (2005): Adatok a Zempléni-hegység flórájához (1950–1980) és a Carpaticumflórahatár kérdése. (Data on the flora of the Zemplén Mountains (1950–1980) and the Carpaticum flora boundary).–Bot. Közlem. 92(1–2): 6984.

    • Search Google Scholar
    • Export Citation
  • Simon, T., Horánszky, A., Dobolyi, K., Szerdahelyi, T. and Horváth, F. (1992): A magyar edényes flóra értékelő táblázata. (Coenological table of the Hungarian vascular flora). – In: Simon, T. (ed.): A magyarországi edényes flóra határozója. Harasztok és virágos növények. Tankönyvkiadó, Budapest, pp. 791874.

    • Search Google Scholar
    • Export Citation
  • Simonkai, L. (1886): Erdély edényes flórájának helyesbitett foglalata. – Királyi Magyar Természettudományi Társulat, Budapest.

    • Search Google Scholar
    • Export Citation
  • Simonkai, L. (1910): Magyarország növényföldrajzi térképe; a szerző hagyatékából ismertette Tuzson J. –Bot. Közlem. 9: 288289.

    • Search Google Scholar
    • Export Citation
  • Skalický, V. (1988): Regionálně-fytogeografické členění ČSR. (Phytogeographical division of the Czech Republic). – In: Hejný, S., Dlavík, B., Chrte, J., Tomšovic, P. and Kovanda, M. (eds): Květena České socialistické republiky 1. (Flora of the Czech Socialist Republic 1). Academia, Praha.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1933a): Floren-und Vegetationskarte des historischen Ungarns. –A Debreceni Tisza István Tud. Társ. Honism. Biz. Kiadv. 8: 535.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1933b): Analyse der Flora des historischen Ungarns. (Elemente, Endemismen, Relikte).–Magyar Biol. Kut.int. Munkái 6: 173194.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1947): Flora Carpato-Pannonica.–Acta Geobot. Hung. 6: 114117.

  • Soó, R. (1961): Neue floristisch-geobotanische Einteilung Ungarns. –Ann. Univ. Sci. Budapest. Rol. Eötvös nom., Sect. Biol. 4: 155166.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1964a, 1966, 1968, 1970, 1973, 1980): A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve 1–6. (Synopsis systematico-geobotanica florae vegetationisque Hungariae 1–6). Akadémiai Kiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1964 b): Die Ranunculus auricomus L. emend. Korsh. Artengruppe in der Flora Ungarns und der Karpaten I. –Acta Bot. Acad. Sci. Hung. 10: 221237.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1965): Die Ranunculus auricomus L. emend. Korsh. Artengruppe in der Flora Ungarns und der Karpaten II.–Acta Bot. Acad. Sci. Hung. 11: 395404.

    • Search Google Scholar
    • Export Citation
  • Tatár, M. (1939): A pannoniai flóra endemikus fajai. (Endemic species of the Pannonian flora). –Acta Geobot. Hung. 2(1): 63127.

  • Tolasz, R., Míková, T., Valeriánová, A. and Voženílek, V. (eds) (2007): Atlas podnebí Česka. (Climate atlas of Czechia). – Český hydrometeorologický ústav, Praha and Univerzita Palackého v Olomouci, Olomouc.

    • Search Google Scholar
    • Export Citation
  • Tunçkol, B., Yaşayacak, H. and Aksoy, N. (2020): Distribution patterns of rare Kitaibela vitifolia Willd in Turkey: Taxonomy, chorology, and conservation.–Modern Phytomorph. 14: 13.

    • Search Google Scholar
    • Export Citation
  • Tuzson, J. (1913): Adatok a délorosz puszták összehasonlító flórájához. (Data for the comparative flora of the southern Russian steppes). –Bot. Közlem. 12(5–6): 181202.

    • Search Google Scholar
    • Export Citation
  • Tuzson, J. (1915): A magyar alföld növényföldrajzi tagolódása. (The phytogeographical division of the Hungarian Great Plain). –Math. Term.tud. Ért. 33: 143220.

    • Search Google Scholar
    • Export Citation
  • U. Szabó, M. (1939): Hivatalos gyógynövényeink hazai elterjedése. (Distribution of our herbs).–Acta Geobot. Hung. 2(2): 200233.

    • Search Google Scholar
    • Export Citation
  • Varga, Z. (2018): Állatvilág. (Fauna). – In: Kocsis, K. (ed.): Magyarország Nemzeti Atlasza, Természeti környezet. MTA CSFK Földrajztudományi Intézet, Budapest.

    • Search Google Scholar
    • Export Citation
  • Vladimirov, V. and Tsoneva, S. (2006): Tragopogon floccosus (Asteraceae: Cichorioideae), recently discovered species in the Bulgarian flora. –Phytol. Balcan. 12(1): 6770.

    • Search Google Scholar
    • Export Citation
  • Vojtkó, A. (2016): A Gömör-Tornai karszt növényföldrajza. (Phytogeography of the GömörTorna Karst). – In: Virók, V., Farkas, R., Farkas, T., Šuvada, R. and Vojtkó, A. (eds): A Gömör-Tornai-karszt flórája, Enumeráció. Aggteleki Nemzeti Park Igazgatóság, Jósvafő, pp. 940.

    • Search Google Scholar
    • Export Citation
  • Willner, W. (2013): Pannonische Steppenrasen in Österreich. – In: Baumbach, H. and Pfützenreuter, S. (eds): Steppenlebensräume Europas. Gefährdung, Erhaltungsmaßnahmen und Schutz. Thüringer Ministerium für Landwirtschaft, Forsten, Umwelt und Naturschutz, Erfurt.

    • Search Google Scholar
    • Export Citation
  • Wraber, M. (1969): Pflanzengeographische Stellung und Gliederung Sloweniens.–Plant Ecol. 17: 176199.

  • Zólyomi, B. (1989): Magyarország természetes növénytakarója, 1:1.500.000. (Map of the potential natural vegetation of Hungary). – In: Pécsi, M. (ed.): Nemzeti Atlasz. Kartográfiai Vállalat, Budapest, p. 89.

    • Search Google Scholar
    • Export Citation
  • Zupančič, M., Marinček, L. Seliškar, A. and Puncer, I. (1987): Considerations on the phyto-geographic division of Slovenia.–Biogeographia 13: 8998.

    • Search Google Scholar
    • Export Citation

Appendix 1 List of non-endemic taxa (previously considered endemic in the Pannonicum)

TaxonNotes
Acer acuminatilobum J. Papp*Taxonomic status uncertain
Achillea horanszkyi UjhelyiPrimary hybrid of Achillea nobilis× ochroleuca? (Dobolyi 1997)
Achillea tuzsonii Ujhelyi*Achillea crithmifolia var. tuzsonii (Dobolyi in litt.)
Allium ammophilum Heuff.Synonym of Allium albidum (Stearn 1980, Govaerts 1995) or A. denudatum F. Delaroche (theplantlist.org 2021) / A. denudatum Redouté (WCSP 2021). (wider non-endemic distribution)
Artemisia santonicum L. subsp. patens (Neilr.) K. M. Perss.Wider non-endemic distribution. It occurs in Turkey for example (Kurşat et al.2011)
Aster tripolium L. subsp. pannonicus (Jacq.) Soó = Tripolium pannonicum (Jacq.) Dobrocz. subsp. pannonicumWider non-endemic distribution (Greuter and Raab-Straube 2006)
Bromus pannonicus Kumm. et Sendtn. = Bromopsis pannonica (Kumm. et Sendtn.) Holub)Wider non-endemic distribution (Valdés and Scholz 2009)
Campanula sibirica L. subsp. divergentiformis (Jáv.) Domin*Wider non-endemic distribution (e.g. Fedorov 1976)
Carduus collinus Waldst. et Kit.Wider non-endemic distribution (Kliment et al.2016)
Centaurea indurata Janka =Centaurea phrygia subsp. indurata (Janka) Stoj. et Acht.)Wider non-endemic distribution (Greuter and Raab-Straube 2006)
Centaurium uliginosum (Waldst. et Kit.) Beck = Centaurium littorale (Turner) Gilmour subsp. uliginosum (Waldst. et Kit.) Rothm. ex Melderis)Wider non-endemic distribution
Cerastium arvense L. subsp. matrense (Kit.) Jáv.Synonym of Cerastium arvense subsp. molle (Vill.) Arcang. (Jalas 1993, theplantlist.org 2021) or Cerastium arvense (Marhold 2011 a)
Cirsium eriophorum subsp. degenii (Petr.) SoóSynonym of Cirsium eriophorum (L.) Scop.
Cirsium furiens Griseb. et SchenkWider non-endemic distribution (Oprea 2005)
Cotoneaster matrensis Domokos*Synonym of Cotoneaster laxiflorus J. Jacq. ex Lindl. (Dickoré and Kasperek 2010)
Cynoglossum hungaricum Simonk.*Wider non-endemic distribution
Cytisus supinus subsp. pseudorochelii (Simonk.)Synonym of Chamaecytisus × pseudorochelii (Simonk.) Pifkó (Pifkó 2005)
Dactylorhiza fuchsii subsp. sooana (Borsos) BorsosWider non-endemic distribution (Kliment 1999, Kliment et al.2016)
Dianthus collinus subsp. glabriusculus (Kit.) ThaiszWider non-endemic distribution (Jalas and Suominen 1986)
Dianthus giganteiformis BorbásWider non-endemic distribution (Jalas and Suominen 1986)
Elatine hungarica MoeszWider non-endemic distribution (Mosyakin and Fedoronchuk 1999, Didukh Ya. et al.2010)
Epipactis atrorubens subsp. borbasii Soó*Epipactis atrorubens var. borbasii Soó (e.g. Voigt et al.2011, Molnár and Csábi 2021)
Epipactis lapidocampi Klein et Laminger*Epipactis muelleri var. lapidocampi (Kreutz 2007)
Erysimum odoratum Ehrh. subsp. buekkense (Boros) Soó*Erysimum odoratum var. buekkense
Festuca pannonica* WulfenQuestionable (Šmarda et al.2007, 2009, Danihelka et al.2009)
Fraxinus angustifolia Vahl subsp. danubialis Pouzar (= F. a. subsp. pannonica Soó et Simon)Wider non-endemic distribution (Simon 1992, 2000, Raddi 2010, map: Bartha 2016)
Galium austriacum Jacq.Wider non-endemic distribution (Marhold 2011 b)
Heracleum sphondylium L. subsp . chloranthum (Borbás) H. NeumayerSynonym of H. sphondylium subsp. sibiricum (L.) Simonk. (Hand 2011)
Hieracium budense Borbás = Pilosella budensis (Borbás) Soják)Wider non-endemic distribution (Bräutigam and Greuter 2007–2009)
Hieracium chaetocymum Deg. et Z.Synonym of Pilosella megatricha (Borbás) Soják (Bräutigam and Greuter 2007–2009, CWG 2021)
Hieracium megatrichum Borbás =Pilosella megatricha (Borbás) Soják)Wider non-endemic distribution (Bräutigam and Greuter 2007–2009, CWG 2021)
Hieracium sommerfeltii subsp. degenianum Zahn*Status and distribution unclear
Iris aphylla L. subsp. hungarica (Waldst. et Kit.) HegiSynonym of Iris aphylla L. (Wróblewska et al.2010)
Kitaibela vitifolia Willd.Wider non-endemic distribution (e.g. Tunçkol et al.2020)
Knautia arvensis (L.) Coult subsp. budensis (Simonk.) Jáv.Synonym of Knautia arvensis (L.) Coult subsp. pannonica (Heuff.) O. Schwarz (Király 2009)
Knautia arvensis (L.) Coult subsp. pannonica (Heuff.) O. SchwarzWider non-endemic distribution. (Domina 2017)
Koeleria javorkae Ujhelyi*Probably synonymous, taxonomic research is needed.
Koeleria majoriflora (Borbás) Borbás ex DominSynonym of Koeleria macrantha (Ledeb.) Schult. (Valdés and Scholz 2009)
Lathyrus pannonicus (Jacq.) GarckeWider non-endemic distribution (Soó 1966, Ball 1968)
Lepidium crassifolium Waldst. et Kit.*Synonym of Lepidium cartilagineum (J. C. Mayer) Thell.
Melampyrum barbatum Waldst. et Kit. ex Willd. subsp. kitaibelii (Soó) SoóSynonym of Melampyrum barbatum subsp . barbatum Waldst. et Kit. ex Willd.
Minuartia frutescens (Kit.) TuzsonWider non-endemic distribution (Kliment et al.2016)
Molinia horanszkyi Milk.*Synonym of Molinia caerulea (L.) Moench
Molinia hungarica Milk.*Synonym of Molinia caerulea (L.) Moench
Molinia pocsii Milk.*Synonym of Molinia arundinacea Schrank
Molinia simonii Milk.*Synonym of Molinia caerulea (L.) Moench
Molinia ujhelyii Milk.*Synonym of Molinia arundinacea Schrank
Noccaea kovatsii Heuff.subsp . schudichii (Soó)Soó*Taxonomic status unresolved
Ononis semihircina Simonk. / Ononis spinosiformis Simonk.*Taxonomic status uncertain. Probably a synonym
Onosma arenaria Waldst. et Kit.Taxonomic research in progress (Kolarčik in litt.). Based on our current knowledge it has wider non-endemic distribution (Kolarčik et al.2014, 2018)
Onosma tornensis Jáv.*Synonym of Onosma viridis (Borbás) Jáv. (Mártonfi et al.2014)
Oxytropis pilosa (L.) DC. subsp. hungarica (Borbás) Soó*Synonym of Oxytropis pilosa (L.) DC.
Plantago schwarzenbergiana SchurWider non-endemic distribution (Oprea 2005)
Polygonum graminifolium Wierzb. ex Heuff.Wider non-endemic distribution (Jalas and Suominen 1979)
Polygonum kitaibelianum SadlerSynonym of Polygonum bellardii All. (e.g. Akeroyd 1993, Fischer et al.2008, Király 2009)
Potamogeton pectinatus L. subsp. balatonicus (Gams) Soó*Synonym of Stuckenia pectinata (L.) Börner (Kaplan 2008)
Puccinellia limosa (Schur) Holmb. = Puccinellia distans subsp. limosa (Schur) Soó et Jáv.Wider non-endemic distribution (Hughes and Halliday 1980)
Puccinellia pannonica (Hack.) Holmb.Puccinellia distans× Puccinellia (Pseudosclerochloa)rupestris = Ppannonica (Hack.) Holmb. It was adventive (in Budapest), but it became extinct in Hungary
Pyrus magyarica Terpó*Taxonomic status uncertain (Barina and Király 2014)
Rhinanthus borbasii (Dörfl.) Soó subsp. borbasiiStatus uncertain. Wider non-endemic distribution (e.g. Snowarski 2021)
Rorippa sylvestris (L.) Besser subsp . kerneri (Menyh.) SoóWider non-endemic distribution (Jalas and Suominen 1994)
Rosa facsarii Kerényi-NagyWider non-endemic distribution (Kerényi-Nagy in litt.)
Rosa pocsii Kerényi-Nagy*Taxonomic status uncertain. See Wissemann and Ritz 2007, Bakker et al.2019
Rosa sancti-andreae Degen et Trautmann*Synonym of Rosa villosa L.
Rosa zagrabiensis Vuk. et Heinr. Braun*Synonym of Rosa marginata Wallr. (Kurtto 2009, theplantlist.org 2021)
Rosa zalana Wiesb.Wider non-endemic distribution (Kurtto et al.2004, Kerényi-Nagy 2012 b)
Scilla bifolia subsp. buekkensis (Speta) SoóWider non-endemic distribution (Trávníček et al. 2009)
Scilla vindobonensis subsp. borhidiana KeresztySynonym of Scilla vindobonensis (Govaerts et al.2021)
Sedum neglectum Ten.subsp. sopianae PriszterTaxonomic status uncertain. Probably synonym of Sedum acre L. (Sramkó 2009)
Seseli osseum Crantz (incl. Seseli devenyense Simonk.)Wider non-endemic distribution (Oprea 2005, Štěpánková 2012, Wild et al.2019)
Sorbus budaiana KárpátiIt seems to be synonym of Sorbus aria (L.) Crantz (Sennikov and Kurtto 2017, Somlyay and Sulyok 2018). Caryosystematic studies are required
Sorbus huljakii KárpátiIt seems to be synonym of Sorbus aria (L.) Crantz (Sennikov and Kurtto 2017, Somlyay and Sulyok 2018). Caryosystematic studies are required
Sorbus javorkae (Soó) KárpátiSynonym of Sorbus danubialis (Somlyay and Sennikov 2016)
Sorbus sooi (Soó) Kárpáti et SoóSynonym of Sorbus danubialis (Somlyay and Sennikov 2016)
Suaeda salinaria (Schur) Simonk.Synonym of Suaeda salsa (L.) Pall. (Govaerts et al.2021)
Thymus glabrescens Willd. subsp. degenianus (Lyka) SoóSynonym of Thymus glabrescens subsp. glabrecens (Mártonfi 1997)

Notes (*)

Acer acuminatilobum: This taxon was discovered and described by József Papp in the Mátra mountains (Hungary) as a leaf variety of A. campestre L (Papp 1954). Later he lifted this taxon up to species rank (Papp 1958). Hungarian botanists have discussed the status of this tree but there is no clear decision as to whether it is a species or a variety. It is mentioned as a species (Simon 1992, 2000, Bartha et al. 2011, Bartha and Kerényi-Nagy 2012), or taxonomic rank is questionable (Bartha 2009a, 2021). Other opinions suggest that it may be a hybrid of the Acer campestre L. and A. monspessulanum L.: Acer × bornmuelleri Borbás (Kerényi-Nagy 2019). Rivers et al. (2019) not listed.

Achillea tuzsonii: It is very similar to A. crithmifolia, but the leaf size is larger. Probably only a habitat modification.

Campanula sibirica subsp. divergentiformis: It has wider non-endemic distribution (e.g. Fedorov 1976, Conti et al. 2005, Oprea 2005). International databases treat it as a synonym of C. sibirica (Castroviejo et al. 2010, theplantlist).

Cotoneaster matrensis: Taxonomic status unclear. Treated as a varietas (Jávorka and Soó 1951), a sub-species (Hrabětová-Uhrová 1962), a species (Simon 1992), or a putative hybrid (Bartha 2009b). It is probably best to treat it as a synonym (e.g. Bölöni 2012, Macková et al. 2020). We follow here Dickoré and Kasperek (2010).

Cynoglossum hungaricum: Taxonomic status unclear. Extremely variable, particularly in indumentum, floral and fruit characters. Local variants have been given specific, subspecific or varietal rank (Kovanda 1972). Treat as a species (Kovanda 1972, Valdés 2011) with wider non-endemic distribution (SE and EC Europe) or a synonym of C. montanum L. (theplantlist.org 2021).

Epipactis atrorubens subsp. borbasii Soó: Probably a sandy habitat modification. The leaves are usually more ovate but not all individuals have this morphological difference in sandy habitats (Jávorka and Soó 1951, Voigt et al. 2011).

Epipactis lapidocampi: This orchid was described in 2004 from a Pinus nigra plantation near Wiener Neustadt (NE Austria) (Klein and Laminger 2004). It differs from the E. muelleri mainly in the properties of the vegetative parts, which is presumably due to a mutation that altered the growth processes. However, the flowers of the two taxa are very similar. Thus, and because only a small locality and very few individuals of E. lapodocampi are known it is presumably only a variant (Kreutz 2007).

Erysimum odoratum subsp. buekkense: Taxonomic status uncertain. It was considered a subspecies (Soó 1968, Farkas 1999) or a varietas (Jávorka and Soó 1951, Simon 1992, 2000). The newest Hungarian flora (Király 2009) not recognised as a taxon. The flowers of the “buekkense” are larger than those of type subspecies, but there are transitions (Soó 1968, Simon 1992, 2000). The difference is in the presence or absence of rosette when flowering is also uncertain.

Festuca pannonica: In recent floras, F. pannonica has been treated as a taxon of F. pallens group due to misinterpretation. The lectotype of the name F. pannonica corresponds to the F. valesiaca (Šmarda et al. 2007, 2009, Danihelka et al. 2009).

Hieracium sommerfeltii subsp. degenianum: It was described by Zahn (1926) and reported only from one locality in the Transdanubian Mountains (Szentendre: Berseg-hegy). Soó (1970) also reported from Leányfalu, but it is probably the same location (this is the nearest village). It is probably endemic, however, the current taxonomic and chorological knowledge is missing.

Koeleria javorkae: Although Koeleria has been subjected to several taxonomic revisions during the 20th century, many essential systematic questions remain unanswered. The main reason is the high morphological similarity of many taxa, especially in the K. macrantha aggregate accompanied by their large intraspecific phenotypic variability. Misunderstanding these facts and considering phenotypes as genotypes led some taxonomists to describe hundreds of intraspecific taxa, and thus provided the basis for many recent taxonomic problems (Pecinka et al. 2006). Many taxa are classified in the K. macrantha aggregate, but the taxonomic status of many is unresolved. Such is the case of K. javorkae, which shows clear morphological differences (Somlyay 2009), but further studies are needed. Occurs only in the Hungarian Great Plain: Duna–Tisza köze, Nyírség (Bartha et al. 2021).

Lepidium crassifolium: Taxonomic status unclear. Probably a synonym of L. cartilagineum (J. C. Mayer) Thell. (theplantlist.org 2021) and has wider non-endemic distribution.

Molinia horanszkyi, M. hungarica, M. pocsii, M. simonii, M. ujhelyii: They form a polyploid line and their taxonomic value is questionable (Király 2009). They are currently considered synonymous with Molinia arundinacea and M. caerulea (theplantlist.org 2021).

Noccaea kovatsii subsp . schudichii: Its taxonomic status is unresolved. It was first classified as a varietas or subspecies of N. jankae (Jávorka and Soó 1951). Later, Soó considered it a microspecies whose closest relative is the N. kovatsii (Soó 1968). Recent Hungarian literature mentions it as a subspecies of the latter (Simon 1992, 2000, Vidéki 1999, Barina and Király 2009). Jalas et al. (1996) classified it as N. kovatsii with the remark that “further biosystematic study is needed”. It differs in from the type subspecies that fruits are deeply pinched at the apex, the wings are protruding, so the incision is so big that the pistil is sometimes shorter than the wings (Soó 1968, Simon 1992, 2000, Vidéki 1999). Known from only two localities in the Zemplén Mts (Füzéri-várhegy (hill), Kemence-patak valley). Based on field observations (Füzéri-várhegy) and comparative herbarium studies, only a part of the population shows the described (e.g. Soó 1968) morphological differences, and a significant part of the examined individuals seems to be very similar as the nominate subspecies. Further studies are needed.

Ononis semihircina / O. spinosiformis: Taxonomic status uncertain. In the early 20th century the two were considered separate species (O. semirhircina as a synonym of O. spinoso-hircina Feicht.) (Jávorka 1924–1925). Later O. spinosiformis treat as a varietas (Jávorka and Soó 1951) or subspecies of O. semihircina (Soó 1966). Because O. spinosiformis was previously described (1877 vs. 1879), Soó changed the taxonomic rank of the two (Soó 1970). According to Săvulescu (1957) these two taxa are synonymous with O. pseudohircina, but according to Soó the latter is actually a hybrid and clearly separated from the other two (Soó 1966). The most recent Hungarian floras (Simon 1992, 2000, Király 2009) follow Soó (1970) and treat O. spinosiformis as a species and O. semihircina as a subspecies of the former with the remark that the separation of these taxa is uncertain (Király 2009). Recent Romanian floras (Ciocârlan 2000, 2009, Oprea 2005) treat O. spinosiformis as a subspecies of O. arvensis (= O. hircina). According to international databases these are synonym of Ononis spinosa subsp. hircina (Jacq.) Gams. (theplantlist, EuroPlusMed) or O. arvensis (WCVP). Their exact distribution is unknown. A taxon called “semihircina” was considered endemic in the Pannonicum (U. Szabó 1941, Soó 1966).

Onosma tornensis: This species has been considered as one of the rarest stenoendemic of the Pannonicum with a restricted occurrence in a small area in the eastern part of the Gömör–Torna Karst (at the Hungarian–Slovak border). Recent molecular study (Kolarčik et al. 2010) confirmed significant DNA similarity of O. tornensis populations from Slovakia with O. viridis populations from the Banat part of the Southern Carpathians and taxonomic identity of both species. Regarding this fact, Mártonfi et al. (2014) reports O. tornensis as synonym of O. viridis.

Oxytropis pilosa subsp. hungarica: It was originally a varietas (Jávorka 1924–1925, Jávorka and Soó 1951) and raised subspecies level by Soó (1966). The most recent Hungarian flora (Király 2009) does not mention.

Potamogeton pectinatus subsp. balatonicus: First described as a variety of P. helveticus from a Hungarian lowland lake (Balaton), as well as later collected specimens designated with this name, do not deviate from the usual variation of S. pectinata (Kaplan 2008).

Pyrus magyarica: Its taxonomic status is unclear. The confusions originate from the invalidity of the description and the lack of type material. No vouchers or living specimens that correspond to the protologue can be found and herbarium specimens assigned as P. magyarica mostly refer to P. pyraster (Barina and Király 2014). The leaf morphological characters given in the protologue of P. magyarica (used for distinguishing the taxon) (Terpó 1960) are also observable on P. pyraster (Barina and Király 2014). On the basis of the identification key by Terpó (1960), P. magyarica differs from P. pyraster in the calyx: it is either deciduous (magyarica) or persistent (pyraster). In his more recent studies Terpó (1992) characterised P. magyarica by the same morphological features. Unfortunately, only two herbarium sheets bear ripe fruits, but these specimens do not have cordate and sharply serrate leaves, their petioles are remarkably longer (–6 cm) while the peduncles shorter (1.5 cm) than given in the protologue of P. magyarica (Barina and Király 2014). In the vicinity of one of the sites marked in the description (Pilis–Visegrád Mts: Pomáz and examined nearby sites), only individuals with a mixed fruit morphology character could be found (Riezing ined.).

Rosa pocsii: Recently described taxon (Kerényi-Nagy 2012 a). Distribution: in the northern and northeastern part (sometimes on the edge) of the Pannonicum (Kerényi-Nagy et al. 2014, Kerényi-Nagy and Penksza 2015). It is very similar to R. micrantha. The only difference is in the leaflet (glandular or eglandular above Kerényi-Nagy 2012 a). Taxonomic status uncertain. See Wissemann and Ritz (2007), Bakker et al. (2019). Further studies are needed.

Rosa sancti-andreae: Synonym of R. ciliatopetala Besser (Kerényi-Nagy 2011) and it has wider non-endemic distribution range. The latter is probably synonym of R. villosa L. (see Kurtto 2009, Govaerts et al. 2021, theplantlist.org 2021).

Rosa zagrabiensis: According to Kerényi-Nagy (2012 b) it is probably a microspecies of R. rubiginosa. Further studies are needed.

REFERENCES

  • Akeroyd, J. R. (1993): Polygonum L. – In: Tutin, T. G. et al. (eds): Flora Europaea 1. Ed. 2. Cambridge University Press, Cambridge, pp. 9197.

    • Search Google Scholar
    • Export Citation
  • Bakker, P., Maes, B., Maskew, R. and Stace, C. (2019): Dog-roses (Rosa sect. Caninae): towards a consensus taxonomy. –British and Irish Botany 1: 719.

    • Search Google Scholar
    • Export Citation
  • Baksay, L. (1956): Cytotaxonomical studies on the flora of Hungary. –Annls hist.-nat. Mus. natn. Hung. (ser. n.) 7: 321334.

  • Ball, P. W. (1968): Lathyrus L. – In: Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. and Webb, D. A. (eds): Flora Europaea 2. Cambridge University Press, Cambridge, pp. 136143.

    • Search Google Scholar
    • Export Citation
  • Barina, Z. and Király, G. (2009): Thlaspi L. (incl. Microthlaspi F. K. Mey) – Tarsóka. – In: Király, G. (ed.): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, pp. 186187.

    • Search Google Scholar
    • Export Citation
  • Barina, Z. and Király, G. (2014): Taxonomic re-evaluation of the enigmatic Pyrus magyarica (Rosa-ceae).–Phytotaxa 167(1): 133136.

  • Bartha, D. and Kerényi-Nagy, V. (2012): Mátrai ősjuhar (Acer acuminatilobum). – In: Bartha, D. (ed.): Magyarország ritka fa- és cserjefajainak atlasza. (Atlas of rare shrubs and trees in Hungary: Kossuth Kiadó, Budapest, pp. 287288.

    • Search Google Scholar
    • Export Citation
  • Bartha, D. (2009a): Aceraceae – Juharfélék családja. – In: Király, G. (ed.): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, pp. 275276.

    • Search Google Scholar
    • Export Citation
  • Bartha, D. (2009b): Cotoneaster Medik. – Madárbirs. – In: Király, G. (ed.): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). Aggteleki Nemzeti Park Igazgatóság, Jósvafő, p. 229.

    • Search Google Scholar
    • Export Citation
  • Bartha, D. (2016): Eine wenig bekannte Esche: die Ungarische Esche Fraxinus angustifolia Vahl. subsp. danubialis Pouzar. Teil II. –Mitt. Deutsch. Dendrol. Gesell. 101: 5568.

    • Search Google Scholar
    • Export Citation
  • Bartha, D. (2021): An annotated and updated checklist of the Hungarian dendroflora. –Acta Bot. Hung. 63: 227284.

  • Bartha, D., Bán, M., Schmidt, D. and Tiborcz, V. (2021): Magyarország edényes növényfajainak online adatbázisa (http://floraatlasz.uni-sopron.hu). – Soproni Egyetem, Erdőmérnöki Kar, Növénytani ésTermészetvédelmi Intézet.

    • Search Google Scholar
    • Export Citation
  • Bartha, D., Kerényi-Nagy, V. and Molnár, Cs. (2011): Acer acuminatilobum J. Papp (1958)–Matra-ancient maple. –The Maple Society Newsletter 21(2): 59.

    • Search Google Scholar
    • Export Citation
  • Bölöni, J. (2012): Madárbirsek (Cotoneaster spp.). – In: Bartha, D. (ed.): Magyarország ritka fa és cserjefajainak atlasza. Kossuth Kiadó, Budapest, pp. 154167.

    • Search Google Scholar
    • Export Citation
  • Bräutigam, S. and Greuter, W. (2007–2009): Pilosella. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Castroviejo, S., Aldasoro, J. J., Alarcón, M. and Hand, R. (2010): Campanulaceae. – In: Euro+Med Plant-base – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Ciocârlan, V. (2000): Flora Ilustrată a Romăniei, Pteridophyta et Spermatophyta. (The Illustrated Flora of Romania, Pteridophyta et Spermatophyta). – Editura Ceres, Bucuresti.

    • Search Google Scholar
    • Export Citation
  • Ciocârlan, V. (2009): Flora Ilustrată a Romăniei, Pteridophyta et Spermatophyta. (The Illustrated Flora of Romania, Pteridophyta et Spermatophyta). – Editura Ceres, Bucuresti.

    • Search Google Scholar
    • Export Citation
  • Conti, F., Abbate, G., Alessandrini, A., Blasi, C., Bonacquist, S. and Scassellati, E. (2005): An annotated checklist of the Italian vascular flora. – Palombi Editori, Roma.

    • Search Google Scholar
    • Export Citation
  • CWG, Compositae Working Group (2021): Global Compositae Database. – https://www.compositae.org

  • Danihelka, J., Šmarda, P. and Foggi, B. (2009): (1864) Proposal to reject the name Festuca pannonica (Poaceae).–Taxon 58(1): 295296.

  • Dickoré, W. B. and Kasperek, G. (2010): Species of Cotoneaster (Rosaceae, Maloideae) indigenous to, naturalising or commonly cultivated in Central Europe.–Willdenowia 40: 1346.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Didukh, Ya. et al. (2010): Ecoflora of Ukraine 6. – Phytosociocentre, Kyiv.

  • Dobolyi, K. (1997): Gondolatok az Achillea horanszkyi Ujhelyi taxonómiai helyzetéről. (Comments on the taxonomic status of Achillea horanszkyi Ujhelyi). –Kitaibelia 2(2): 177178.

    • Search Google Scholar
    • Export Citation
  • Domina, G. (2017): Dipsacaceae. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Farkas, S. (ed.) (1999): Magyarország védett növényei. (Protected plants of Hungary). – Mezőgazda Kiadó, Budapest.

  • Fedorov, A. A. (1976): Campanula L. – In: Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. and Webb, D. A. (eds): Flora Europaea 4. Cambridge University Press, Cambridge.

    • Search Google Scholar
    • Export Citation
  • Fischer, M. A., Oswald, K. and Adler, W. (2008): Exkursionsflora für Österreich, Liechtenstein und Südtirol. 3. Aufl. – Land Oberösterreich, Biologiezentrum der Oberösterr. Landesmuseen, Linz.

    • Search Google Scholar
    • Export Citation
  • Govaerts, R. (1995): World checklist of seed plants. 1(1, 2). – MIM, Deurne, pp. 1529 1–483, 1–529.

  • Govaerts, R., Nic Lughadha, E., Black, N., Turner, R. and Paton, A. (2021): The world checklist of vascular plants (WCVP), a continuously updated resource for exploring global plant diversity. https://wcvp.science.kew.org

    • Search Google Scholar
    • Export Citation
  • Greuter, W. and Raab-Straube, E. von (eds) (2006+): Compositae. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Hand, R. (2011): Apiaceae. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Hrabětová-Uhrová, A. (1962): Beitrag zur Taxonomie und Verbreitung der Gattung Cotoneaster in der Tschechoslowakei.–Práce Brněnske Zákl Českoslov Akad. Věd. 34: 197248.

    • Search Google Scholar
    • Export Citation
  • Hughes, W. E. and Halliday, G. (1980): Puccinellia Parl. – In: Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. and Webb, D. A. (eds): Flora Europaea 5 (Alismataceae to Orchidaceae). Cambridge University Press, Cambridge, pp. 167169.

    • Search Google Scholar
    • Export Citation
  • Jalas, J. (1993): Cerastium L. (perennial species). – In: Tutin, T. G. et al. (eds): Flora Europaea 1. Ed. 2. Cambridge University Press, Cambridge, pp. 164175.

    • Search Google Scholar
    • Export Citation
  • Jalas, J. and Suominen, J. (eds) (1979): Atlas Florae Europaeae, distribution of vascular plants in Europe 4. – The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

    • Search Google Scholar
    • Export Citation
  • Jalas, J. and Suominen, J. (eds) (1986): Atlas Florae Europaeae, distribution of vascular plants in Europe 7. – The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

    • Search Google Scholar
    • Export Citation
  • Jalas, J. and Suominen, J. (eds) (1994): Atlas Florae Europaeae, distribution of vascular plants in Europe 10. – The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

    • Search Google Scholar
    • Export Citation
  • Jalas, J., Suominen, J. and Lampinen, R. (eds) (1996): Atlas Florae Europaeae, distribution of vascular plants in Europe 11. – The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

    • Search Google Scholar
    • Export Citation
  • Jávorka, S (1924 –1925): Magyar Flóra. (Flora of Hungary). – Studium, Budapest.

  • Jávorka, S. and Soó, R. (1951): A magyar növényvilág kézikönyve I–II. (Handbook of the Hungarian flora I–II). – Akadémiai Kiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Kaplan, Z. (2008): A taxonomic revision of Stuckenia (Potamogetonaceae) in Asia, with notes on the diversity and variation of the genus on a worldwide scale.–Folia Geobot. 43: 159234.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kerényi-Nagy, V. (2011): A szentendrei rózsa (Rosa sancti-andreae) nevezéktani és taxonómiai problémái. (Nomenclatural and taxonomical problems related to the Rosa sancti andreae).–Kanitzia 18: 1328.

    • Search Google Scholar
    • Export Citation
  • Kerényi-Nagy, V. (2012a): A Történelmi Magyarország területén élő őshonos, idegenhonos és kultúr-reliktum rózsák kismonográfiája. (A small monograph of native, non-native and cultural-relict roses living in the territory of Historical Hungary). – Nyugat-Magyarországi Egyetem, Sopron.

    • Search Google Scholar
    • Export Citation
  • Kerényi-Nagy, V. (2012b): Ritka rózsafajok és hibridek – Rosa spp. (Rare rose species and its hybrids). – In: Bartha, D. (ed.): Magyarország ritka fa- és cserjefajainak atlasza. (Atlas of rare shrubs and trees in Hungary). Kossuth Kiadó, Budapest, pp. 207225.

    • Search Google Scholar
    • Export Citation
  • Kerényi-Nagy, V. (2019): A mátrai ősjuhar újabb előfordulása és taxonómiai helyzete. (New occur-rence and taxonomic status of the Mátra-ancient maple).–Bot. Közlem. 106(1): 151.

    • Search Google Scholar
    • Export Citation
  • Kerényi-Nagy, V. and Penksza, K. (2015): Javaslatok a Natura2000 jelölőfajok bővítésére–közösségi jelentőségű rózsa-és galagonyafajok. (Suggestions of adding species of Natura2000–rose and hawthorn species with community importance). –Gyepgazd. Közlem. 13(1–2): 318.

    • Search Google Scholar
    • Export Citation
  • Kerényi-Nagy, V., Bakay, L., Valachovič, M., Feráková, V. and Hodálová, I. (2014): Three new rose microspecies from sect. Rubiginosae in Slovakia.–Acta Bot. Hung. 56(3–4): 345359.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Király, G. (ed.) (2009): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). – Aggteleki Nemzeti Park Igazgatóság, Jósvafő.

    • Search Google Scholar
    • Export Citation
  • Klein, E. and Laminger, M. (2004): Epipactis lapidocampi spec. nova (Orchidaceae-Neottiae).–Phyton (Horn, Austria) 44(2): 185189.

  • Kliment, J. (1999): Komentovaný prehľad vyšších rastlín flóry Slovenska, uvádzaných v literatúre ako endemické taxóny. (Annotated survey of the vascular plants of Slovak flora recorded in literature as endemic taxa). –Bull. Slov. Bot. Spoločn. 21(Suppl. 4): 1434.

    • Search Google Scholar
    • Export Citation
  • Kliment, J., Turis, P. and Janišová, M. (2016): Taxa of vascular plants endemic to the Carpathian Mts.–Preslia 88: 1976.

  • Kolarčik, V., Kocová, V., Cakovič, D., Kačmárová, T., Piovár, J. and Mártonfi, P. (2018): Nuclear genome size variation in the allopolyploid Onosma arenaria–O. pseudoarenaria species group: methodological issues and revised data.–Botany 96: 397410.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolarčik, V., Zozomová-Lihová, J. and Mártonfi, P. (2010): Systematics and evolutionary history of the Asterotricha group of the genus Onosma (Boraginaceae) in central and southern Europe inferred from AFLP and nrDNA ITS data.–Plant Syst. Evol. 290: 2145.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kolarčik, V., Zozomová-Lihová, J., Ducár, E. and Mártonfi, P. (2014): Evolutionary significance of hybridization in Onosma (Boraginaceae): analyses of stabilized hemisexual odd polyploids and recent sterile hybrids. –Biol. J. Linn. Soc. 112: 89107.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kovanda, M. (1972): Cynoglossum L. – In: Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valentine, D. H., Walters, S. M. and Webb, D. A. (eds): Flora Europaea 3. (Diapensiaceae to Myoporaceae). Cambridge University Press, Cambridge, pp. 119121.

    • Search Google Scholar
    • Export Citation
  • Kreutz, C. A. J. (2007): Neukombinationen und Ergänzungen zu verschiedenen europäischen Orchideentaxa. –Ber. Arbeitskrs. Heim. Orch. 24(1): 142186.

    • Search Google Scholar
    • Export Citation
  • Kurşat, M., Türkoğlu, I., Civelek, S. and Tabur, S. (2011): A new subspecies record for the flora of Turkey: Artemisia santonicum L. subsp. patens (Neilr.) K. M. Perss. (Asteraceae). –Turk J. Bot. 35: 89.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Kurtto, A. (2009): Rosaceae (pro parte majore). – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Kurtto, A., Lampinen, R. and Junikka, L. (eds) (2004): Atlas Florae Europaeae, distribution of vascular plants in Europe 13. – The Committee for Mapping the Flora of Europe and Societas Biologica Fennica Vanamo, Helsinki.

    • Search Google Scholar
    • Export Citation
  • Macková, L., Nosková, J., Ďurišová, Ľ. and Urfus, T. (2020): Insights into the cytotype and reproductive puzzle of Cotoneaster integerrimus in the Western Carpathians.–Plant Syst. Evol. 306: 58.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Marhold, K. (2011 a): Caryophyllaceae. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Marhold, K. (2011b): Rubiaceae. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Mártonfi, P. (1997): Nomenclatural survey of the genus Thymus sect. Serpyllum from Carpathians and Pannonia. –Thaiszia 7: 111181.

  • Mártonfi, P., Kolarcik, V. and Somlyay, L. (2014): Lectotypification of Onosma viridis and synonymization of O. tornensis with O. viridis (Boraginaceae). –Ann. Bot. Fenn. 51(4): 201206.

    • Search Google Scholar
    • Export Citation
  • Molnár V. A. and Csábi, M. (2021): Magyarország orchideái. (Orchids of Hungary). – Debreceni Egyetem TTK Növénytani Tanszék, Debrecen.

    • Search Google Scholar
    • Export Citation
  • Mosyakin, S. L. and Fedoronchuk, M. M. (1999): Vascular plants of Ukraine. A nomenclatural checklist. – M. G. Kholodny Institute of Botany, National Academy of Sciences of Ukraine Kiev.

    • Search Google Scholar
    • Export Citation
  • Oprea, A. (2005): Lista critică a plantelor vasculare din România. (Critical list of vascular plants of Romania). – Editura Universităţii “Alexandru Ioan Cuza“, Iaşi.

    • Search Google Scholar
    • Export Citation
  • Papp, J. (1954): A Lotus uliginosus Magyaroszágon és néhány új florisztikai adat. –Bot. Közlem. 45: 267271.

  • Papp, J. (1958): Mátrai ősjuhar–Acer acuminatilobum J. Papp.–Az Erdő 7(1): 2931.

  • Pecinka, A., Suchánková, P., Lysak, M. A., Trávníček, and Doležel, J. (2006): Nuclear DNA content variation among Central European Koeleria taxa. –Ann. Bot. 98: 117122.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Pifkó, D. (2005): Adatok a hazai Chamaecytisus-fajok ismeretéhez II. (Data to the knowledge of the Hungarian Chamaecytisus species II).–Flora Pannonica 3: 163174.

    • Search Google Scholar
    • Export Citation
  • Raddi, S. (2010): Fraxinus angustifolia Vahl, 1804. – In: Roloff, A., Weisgerber, H., Lang, U. M. and Stimm, B. (eds): Enzyklopädie der Holzgewächse. Handbuch und Atlas der Dendrologie. Wiley-VCH Verlag, Weinheim, Bd. III/2/54: 118.

    • Search Google Scholar
    • Export Citation
  • Rivers, M. C., Beech, E., Bazos, I., Bogunić, F., Buira, A., Caković, D., Carapeto, A., Carta, A., Cornier, B., Fenu, G., Fernandes, F., Fraga, P., Garcia Murillo, P. J., Lepší, M., Matevski, V., Medina, F. M., Menezes de Sequeira, M., Meyer, N., Mikoláš, V., Montagnani, C., Monteiro-Henriques, T., Naranjo Suárez, J., Orsenigo, S., Petrova, A., Reyes-Betancort, J. A., Rich, T., Salvesen, P. H., Santana López, I., Scholz, S., Sennikov, A., Shuka, L., Silva, L. F., Thomas, P., Troia, A., Villar, J. L. and Allen, D. J. (2019): European red list of trees. – IUCN, Cambridge, UK and Brussels, Belgium.

    • Search Google Scholar
    • Export Citation
  • Săvulescu, T. (ed.) (1957): Flora Reipublicae Popularis Romanicea V. (Flora of Romania). – Academia Republicii Populare Romine, Bucuresti.

    • Search Google Scholar
    • Export Citation
  • Sennikov, A. and Kurtto, A. (2017): A phylogenetic checklist of Sorbus s. l. (Rosaceae) in Europe. –Mem. Soc. Fauna Flora Fennica 93: 178.

    • Search Google Scholar
    • Export Citation
  • Simon, T. (1992): A magyarországi edényes flóra határozója, Harasztok–virágos növények. (Identification guide of the vascular plants of Hungary). – Nemzeti Tankönyvkiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Simon, T. (2000): A magyarországi edényes flóra határozója, Harasztok–virágos növények. (Identification guide of the vascular plants of Hungary). – Nemzeti Tankönyvkiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Šmarda, P., Danihelka, J. and Foggi, B. (2009): Taxonomic and nomenclatural notes on Festuca pannonica, F. valesiaca and F. pseudodalmatica (Poaceae). –Taxon 58(1): 271276.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Šmarda, P., Šmerda, J., Knoll, A., Bureš, P. and Danihelka, J. (2007): Revision of Central European taxa of Festuca ser. Psammophilae Pawlus: morphometrical, karyological and AFLP analysis. –Pl. Syst. Evol. 266: 197232.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Snowarski, M. (2021): Flora Polski. – https://atlas-roslin.pl/gatunki/Rhinanthus.htm

  • Somlyay, L. (2009): Koeleria Pers. – Fényperje. – In: Király, G. (ed.): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). – Aggteleki Nemzeti Park Igazgatóság, Jósvafő, pp. 526527.

    • Search Google Scholar
    • Export Citation
  • Somlyay, L. and Sennikov, A. N. (2016): Atlas Florae Europaeae notes 25. Taxonomic circumscription and nomenclature of Sorbus danubialis (Rosaceae). –Nordic J. Bot. 34: 7586.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Somlyay, L. and Sulyok, J. (2018): Előmunkálatok a Bükk hegység és környéke Sorbus-flórájához. (Preliminary study for the Sorbus flora of the Bükk Mountains and its surroundings). – In: Molnár V. A., Sonkoly, J. and Takács, A. (eds): Programme and Abstracts. 12th International Conference Advances in research on the flora and vegetation of the Carpato-Pannonian region. University of Debrecen, Department of Botany, Debrecen, p. 88.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1966): A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve 2. [Synopsis systematico-geobotanica florae vegetationisque Hungariae 2]. – Akadémiai Kiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1968): A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve 3. [Synopsis systematico-geobotanica florae vegetationisque Hungariae 3]. – Akadémiai kiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Soó, R. (1970): A magyar flóra és vegetáció rendszertani-növényföldrajzi kézikönyve 4. [Synopsis systematico-geobotanica florae vegetationisque Hungariae 4]. – Akadémiai kiadó, Budapest.

    • Search Google Scholar
    • Export Citation
  • Sramkó, G. (2009): Sedum L. (incl. Phedimus Raf.) – Varjúháj. – In: Király, G. (ed.): Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. (New Hungarian herbal. The vascular plants of Hungary. Identification key). – Aggteleki Nemzeti Park Igazgatóság, Jósvafő, pp. 194195.

    • Search Google Scholar
    • Export Citation
  • Stearn, W. T. (1980): Allium L. – In: Tutin, T. G., Heywood, V. H., Burges, N. A., Moore, D. M., Valen tine, D. H., Walters, S. M. and Webb, D. A. (eds): Flora Europaea 5 (Alismataceae to Orchidaceae). Cambridge University Press, Cambridge, pp. 4969.

    • Search Google Scholar
    • Export Citation
  • Štěpánková, J. (ed.) (2012): Phytocartographical syntheses of the Czech Republic 4. – Institute of Botany ASCR Academia, Praha.

  • Terpó, A. (1960): Magyarország vadkörtéi (Pyri Hungariae).–Kertészeti és Szőlészeti Főiskola Évkönyve 11: 1258.

  • Terpó, A. (1992): Pyrus taxa in Hungary, and their practical importance.–Thaiszia 2: 4157.

  • Trávníček, B., Duchoslav, M., Šarhanová, P. and Šafářová, L. (2009): Squills (Scilla s. lat., Hyacinthaceae) in the flora of the Czech Republic, with taxonomical notes on Central-European squill populations. –Acta Mus. Moraviae, Sci. biol. 94: 157205.

    • Search Google Scholar
    • Export Citation
  • Tunçkol, B., Yaşayacak, H. and Aksoy, N. (2020): Distribution patterns of rare Kitaibela vitifolia Willd in Turkey: Taxonomy, chorology, and conservation.–Modern Phytomorphol. 14: 13.

    • Search Google Scholar
    • Export Citation
  • U. Szabó, M. (1941): Hivatalos gyógynövényeink hazai elterjedése. –Acta Geobot. Hung. 3: 200233.

  • Valdés, B. and Scholz, H. (2009): Poaceae (pro parte majore). – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Valdés, B. (2011): Boraginaceae. – In: Euro+Med Plantbase – the information resource for Euro-Mediterranean plant diversity. https://ww2.bgbm.org/EuroPlusMed/query.asp

    • Search Google Scholar
    • Export Citation
  • Vidéki, R. (1999): Schudich-tarsóka – Thlaspi kovatsii Heuff. subsp. schudichii Soó. – In: Farkas, S. (ed.): Magyarország védett növényei. (Protected plants of Hungary). – Mezőgazda Kiadó, Budapest, pp. 210211.

    • Search Google Scholar
    • Export Citation
  • Voigt, W., Vidéki, R., Máté, A. and Molnár V. A. (2011): Vörösbarna nőszőfű – Epipactis atrorubens (Hoffm.) Besser 1809. – In: Molnár V. A. (ed.): Magyarország orchideáinak atlasza. Kossuth Kiadó, Budapest, pp. 419422.

    • Search Google Scholar
    • Export Citation
  • Wild, J., Kaplan, Z., Danihelka, J., Petřík, P., Chytrý, M., Novotný, P., Rohn, M., Šulc, V., Brůna, J., Chobot, K., Ekrt, L., Holubová, D., Knollová, I., Kocián, P., Štech, M., Štěpánek, J. and Zouhar, V. (2019): Plant distribution data for the Czech Republic integrated in the Pladias database (https://pladias.cz/en).–Preslia 91: 1–24.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wissemann, V. and Ritz, C. M. (2007): Evolutionary patterns and processes in the genus Rosa (Rosa-ceae) and their implications for host-parasite co-evolution. –Plant Syst. Evol. 266: 7989.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wróblewska, A., Brzosko, E., Chudzińska, E., Bordács, S. and Prokopiv, A. I. (2010): Cytotype distribution and colonization history of the steppe plant Iris aphylla. –Ann. Bot. Fenn. 47: 2333.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Zahn, K. H. (1927): Beiträge zur Kenntnis der Hieracien Ungarns und der Balkanländer VII. –Magyar Bot. Lapok 25: 283394.

  • Plants of the world online: http://www.plantsoftheworldonline.org

  • The Plant List: http://www.theplantlist.org

  • The World Flora Online: http://www.worldfloraonline.org

  • The Euro+Med PlantBase: http://ww2.bgbm.org/EuroPlusMed/query.asp

  • The World Checklist of Vascular Plants (WCVP) https://wcvp.science.kew.org

  • World Checklist of Selected Plant Families (WCSP): https://wcsp.science.kew.org

Appendix 2 Shared endemic taxa of the Pannonicum and western part of the Carpaticum

TaxonOccurrenceReferences
Dianthus plumarius L.*Au, Sk, CzBarina et al.2020
Epipactis futakii Mered’a et Potůček*Cz, Hu, SkMered’a and Potůček 1998, Vlčko et al.2003, Molnár and Csábi 2021
Epipactis pseudopurpurata Mered’a*Cz, Hu, SkVlčko et al.2003, Csábi and Halász 2016, AHO-Bayern e.V. 2021
Erysimum wittmannii Zaw. subsp. pallidiflorum (Jáv.) Jáv.*Hu, SkSoó 1968, Michalková 2002, Türke et al.2020
Ophris fuciflora (E. W. Schmidt) Moench subsp. holubyana (Andras.) Jáv.*Cz, Hu, SkAndrasovszky 1917, Gulyás et al.2005, Óvári and Molnár 2011

Notes (*)

Dianthus plumarius: Syn.: D. lumnitzeri Wiesb., Dianthus plumarius L. subsp. lumnitzeri (Wiesb.) Domin, Dianthus praecox subsp. lumnitzeri (Wiesb.) Kmeťová. According to the latest literature, this is the correct name for a taxon that occurs from Hainburg to Malé Karpaty and Inovec Mts. (Barina et al. 2020). South Moravian plants certainly belong to this taxon. Determining its exact distribution area requires further research. Hungarian records are probably erroneous. D. p. subsp. neilreichii, D. p. subsp. blandus and D. p. subsp. hoppei treated here as different taxa.

Epipactis futakii: Exact distribution area is still unknown. It occurs in the southern and western parts of the Slovakian Carpaticum (and in the neighbouring Czech Republic) and in the northern part of the Pannonicum (Vlčko et al. 2003, Wild et. al. 2019, Molnár and Csábi 2021, AHO-Bayern e.V. 2021).

Epipactis pseudopurpurata: This orchid was discovered and described in 1996 (Mered’a 1996) and exact distribution is still unknown. It occurs in the western parts of the Slovakian Carpaticum (and in the neighbouring Czech Republic) and in the northern part of the Pannonicum (Transdanubian Mts and western edge of the North Hungarian Mts) (Vlčko et al. 2003, Wild et al. 2019, Molnár and Csábi 2021, AHO-Bayern e.V. 2021).

Erysimum wittmannii subsp . pallidiflorum: Some authors treat it as a species: Erysimum pallidiflorum Jáv. (Baksay 1956, Soó 1968, Michalková 2002). Soó (1968) considered it is a Pannonian endemic, but according to recent literature it also occurs in the eastern part of the Slovakian Carpaticum (Michalková 2002).

Ophris fuciflora subsp. holubyana: (Syn.: Ophrys holoserica subsp. holubyana (Andras.) Dostál, Ophrys holubyana Andras.). Ophrys holubyana was found and described by the Hungarian botanist Andrasovszky (Andrasovszky 1917). This taxon has been interpreted as a hybrid derivative of O. fuciflora and O. oestrifera expressing floral morphological features intermediate between its presumed progenitors. This is very widely accepted in the orchid literature (e.g. Buttler 1986, Delforge 2001, 2006, Vlčko et al. 2003, Gulyás et al. 2005, Óvári and Molnár 2011), probably on the basis of the morphological and chorological features of the species involved. Hungarian plants are not recent hybrids as Kliment et al. (2016) said (Molnár V. in litt.). The distribution areas of the three taxa are separated (Molnár and Csábi 2021). O. holubyana occurs in the northwestern part of the Carpatho-Pannonian region and is considered to be endemic. This taxon is mentioned at different taxonomic levels and classifications (see synonyms). We follow Óvári and Molnár (2011).

REFERENCES

  • AHO-Bayern e.V. (2021): http://www.aho-bayern.de/epipactis

  • Andrasovszky, J. (1917): Magyarország Orchidea-flórájához. (Zur Kenntnis der Orchideen-Flora von Ungarn).–Magyar Bot. Lapok 16: 110112.

    • Search Google Scholar
    • Export Citation
  • Baksay, L. (1956): Cytotaxonomical studies on the flora of Hungary.–Annls hist.-nat. Mus. natn. Hung. 48(7): 321334.

  • Barina, Z., Somogyi, G. and Pifkó, D. (2020): Typification of names in the Dianthus plumarius group in the Carpatho-Pannonian region.–Taxon 69(1): 161169.

    • Search Google Scholar
    • Export Citation
  • Buttler, K. P. (1986): Orchideen. Die wildwachsenden Arten und Unterarten Europas, Vorderasiens und Nordafrikas. – Mosaik Verlag, München.

    • Search Google Scholar
    • Export Citation
  • Csábi, M. and Halász, A. (2016): Új orchideafaj a magyar flórában: Epipactis pseudopurpurata Mered’a.–Kitaibelia 21(1): 2732.

  • Delforge, P. (2001): Guide des Orchidées d’Europe, d’Afrique du Nord et du Proche-Orient. 2nd ed. – Delachaux et Niestlé, Paris.

    • Search Google Scholar
    • Export Citation
  • Delforge, P. (2006): Orchids of Europe, North Africa and the Middle East. 3rd ed. – A&C Black, London.

  • Gulyás, G., Sramkó, G., Molnár V. A., Rudnóy, Sz., Illyés, Z., Balázs, T. and Bratek, Z. (2005): Nuclear ribosomal DNA ITS paralogs as evidence of recent interspecific hybridization in the genus Ophrys (Orchidaceae).–Acta Biol. Cracov., Ser. Bot. 47(2): 6167.

    • Search Google Scholar
    • Export Citation
  • Kliment, J., Turis, P. and Janišová, M. (2016): Taxa of vascular plants endemic to the Carpathian Mts.–Preslia 88: 1976.

  • Mered’a, P. and Potůček, O. (1998): Epipactis futakii, spec. nova (Orchidaceae) blühende Sitter-Art aus der Slowakei. –Preslia 70: 247258.

    • Search Google Scholar
    • Export Citation
  • Mered’a, P. (1996): Epipactis pseudopurpurata Mered’a, spec. nova (Orchidaceae)–eine neue auto-game Sitter-Art aus der Slowakei. –Preslia 68: 2329.

    • Search Google Scholar
    • Export Citation
  • Michalková, E. (2002): Erysimum L. – In: Goliašová, K. and Šípošová, H. (eds): Flóra Slovenska V/4, Veda, Bratislava, pp. 182226.