View More View Less
  • 1 Isfahan University of Medical Sciences, Isfahan, Iran
  • 2 University of Kharazmi, Tehran, Iran
  • 3 Isfahan MN Institute of Basic and Applied Sciences Research, Isfahan, Iran
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

The vasodilatory effect of angiotensin 1–7 (Ang 1-7) is exerted in the vascular bed via Mas receptor (MasR) gender dependently. However, the crosstalk between MasR and angiotensin II (Ang II) types 1 and 2 receptors (AT1R and AT2R) may change some actions of Ang 1-7 in renal circulation. In this study by blocking AT1R and AT2R, the role of MasR in kidney hemodynamics was described. In anaesthetized male and female Wistar rats, the effects of saline as vehicle and MasR blockade (A779) were tested on mean arterial pressure (MAP), renal perfusion pressure (RPP), renal blood flow (RBF), and renal vascular resistance (RVR) when both AT1R and AT2R were blocked by losartan and PD123319, respectively. In male rats, when AT1R and AT2R were blocked, there was a tendency for the increase in RBF/wet kidney tissue weight (RBF/KW) to be elevated by A779 as compared with the vehicle (P=0.08), and this was not the case in female rats. The impact of MasR on renal hemodynamics appears not to be sexual dimorphism either when Ang II receptors were blocked. It seems that co-blockade of all AT1R, AT2R, and MasR may alter RBF/ KW in male more than in female rats. These findings support a crosstalk between MasR and Ang II receptors in renal circulation.

  • 1.

    Baracho N, Simões e Silva AC, Khosla M, Santos R: Effect of selective angiotensin antagonists on the antidiuresis produced by angiotensin-(1–7) in water-loaded rats. Braz. J. Med. Biol. Res. 31, 12211227 (1998)

    • Search Google Scholar
    • Export Citation
  • 2.

    Breitwieser GE: G protein–coupled receptor oligomerization implications for G protein activation and cell signaling. Circulation Research 94(1), 1727 (2004)

    • Search Google Scholar
    • Export Citation
  • 3.

    Campbell DJ: The renin-angiotensin and the kallikrein-kinin systems. Int. J. Biochem. Cell Biol. 35, 784791 (2003)

  • 4.

    Canals M, Jenkins L, Kellett E, Milligan G: Up-regulation of the angiotensin II type 1 receptor by the MAS proto-oncogene is due to constitutive activation of Gq/G11 by MAS. J Biol. Chem. 281, 1675716767 (2006)

    • Search Google Scholar
    • Export Citation
  • 5.

    Caruso-Neves C, Lara L, Rangel L, Grossi A, Lopes A: Angiotensin-(1–7) modulates the ouabain-insensitive Na+-ATPase activity from basolateral membrane of the proximal tubule. Biochim. Biophys. Acta 1467, 189197 (2000)

    • Search Google Scholar
    • Export Citation
  • 6.

    Dahl TD, Hultstrom M, Iversen BM, Helle F: Adenosine sensitization after angiotensin II stimulation in afferent arterioles from normal rats does not occur during two-kidney, one-clip hypertension. Acta Physiol. (Oxf) 201, 289294 (2011)

    • Search Google Scholar
    • Export Citation
  • 7.

    de Castro CH, dos Santos RAS, Ferreira AJ, Bader M, Alenina N, de Almeida AP: Evidence for a functional interaction of the angiotensin-(1–7) receptor Mas with AT1 and AT2 receptors in the mouse heart. Hypertension 46, 937942 (2005)

    • Search Google Scholar
    • Export Citation
  • 8.

    De Mello WC, Danser AJ: Angiotensin II and the heart on the intracrine renin-angiotensin system. Hypertension 35, 11831188 (2000)

  • 9.

    De Souza A, Lopes A, Pizzino C, Fossari R, Miguel N, Cardozo F: Angiotensin II and angiotensin-(1–7) inhibit the inner cortex Na+-ATPase activity through AT2 receptor. Regul. Pept. 120, 167175 (2004)

    • Search Google Scholar
    • Export Citation
  • 10.

    Deddish PA, Marcic B, Jackman HL, Wang H-Z, Skidgel RA, Erdos EG: N-domain-specific substrate and C-domain inhibitors of angiotensin-converting enzyme angiotensin-(1-7) and keto-ACE. Hypertension 31, 912917 (1998)

    • Search Google Scholar
    • Export Citation
  • 11.

    Donoghue M, Hsieh F, Baronas E, Godbout K, Gosselin M, Stagliano N, et al: A novel angiotensin-converting enzyme-related carboxypeptidase (ACE2) converts angiotensin I to angiotensin 1–9. Circ. Res. 87, e1e9 (2000)

    • Search Google Scholar
    • Export Citation
  • 12.

    Eriksson U, Danilczyk U, Penninger JM: Just the beginning: novel functions for angiotensin-converting enzymes. Curr. Biol. 12, R745R752 (2002)

    • Search Google Scholar
    • Export Citation
  • 13.

    Evans RG, Majid DS, Eppel GA: Mechanisms mediating pressure natriuresis: what we know and what we need to find out. Clin. Exp. Pharmacol. Physiol. 32, 400409 (2005)

    • Search Google Scholar
    • Export Citation
  • 14.

    Fakhouri F, Placier S, Ardaillou R, Dussaule JC, Chatziantoniou C: Angiotensin II activates collagen type I gene in the renal cortex and aorta of transgenic mice through interaction with endothelin and TGF-beta. J. Am. Soc. Nephrol. 12, 27012710 (2001)

    • Search Google Scholar
    • Export Citation
  • 15.

    Ferreira A, Santos R, Almeida A: Angiotensin-(1-7) improves the post-ischemic function in isolated perfused rat hearts. Braz. J. Med. Biol. Res. 35, 10831090 (2002)

    • Search Google Scholar
    • Export Citation
  • 16.

    Hansen JL, Hansen JT, Speerschneider T, Lyngsø¸ C, Erikstrup N, Burstein ES: Lack of evidence for AT1R/B2R heterodimerization in COS-7, HEK293, and NIH3T3 cells; how common is the AT1R/B2R heterodimer? J. Biol. Chem. 284, 183118399 (2009)

    • Search Google Scholar
    • Export Citation
  • 17.

    Hocht C, Mayer M, Taira CA: Therapeutic perspectives of angiotensin-(1–7) in the treatment of cardiovascular disease. Open Pharmacol. J. 3, 2131 (2009)

    • Search Google Scholar
    • Export Citation
  • 18.

    Iusuf D, Henning RH, van Gilst WH, Roks AJ: Angiotensin-(1–7): pharmacological properties and pharmacotherapeutic perspectives. Eur. J. Pharmacol. 13, 585, 303312 (2008)

    • Search Google Scholar
    • Export Citation
  • 19.

    Luque M, Martin P, Martell N, Fernandez C, Brosnihan KB, Ferrario CM: Effects of captopril related to increased levels of prostacyclin and angiotensin-(1–7) in essential hypertension. J. Hypertens. 14, 799805 (1996)

    • Search Google Scholar
    • Export Citation
  • 20.

    Lyngso C, Erikstrup N, Hansen JL: Functional interactions between 7TM receptors in the renin-angiotensin system-dimerization or crosstalk? Mol. Cell. Endocrinol. 302, 203212 (2009)

    • Search Google Scholar
    • Export Citation
  • 21.

    Macari D, Bottari S, Whitebread S, De Gasparo M, Levens N: Renal actions of the selective angiotensin AT2 receptor ligands CGP 42112B and PD 123319 in the sodium-depleted rat. E. J. Pharmacol. 249, 8593 (1993)

    • Search Google Scholar
    • Export Citation
  • 22.

    Mansoori A, Oryan S, Nematbakhsh M: Role of Mas receptor antagonist (A779) on pressure diuresis and natriuresis and renal blood flow in the absence of angiotensin II receptors type 1 and 2 in female and male rats. J. Physiol. Pharmacol. 65, 633639 (2014)

    • Search Google Scholar
    • Export Citation
  • 23.

    Pinheiro SVB, Simões e Silva AC: Angiotensin converting enzyme 2, angiotensin-(1–7), and receptor MAS axis in the kidney. Int. J. Hypertens. 2012, ID 414128 (2012)

    • Search Google Scholar
    • Export Citation
  • 24.

    Porrello ER, Pfleger KD, Seeber RM, Qian H, Oro C, Abogadie F: Heteromerization of angiotensin receptors changes trafficking and arrestin recruitment profiles. Cell Signal. 23, 17671776 (2011)

    • Search Google Scholar
    • Export Citation
  • 25.

    Prada J, Ferreira AJ, Katovich MJ, Shenoy V, Qi Y, Santos RA: Structure-based identification of small-molecule angiotensin-converting enzyme 2 activators as novel antihypertensive agents. Hypertension 51, 13121317 (2008)

    • Search Google Scholar
    • Export Citation
  • 26.

    Reckelhoff JF: Gender differences in the regulation of blood pressure. Hypertension 37, 11991208 (2001)

  • 27.

    Safari T, Nematbakhsh M, Hilliard LM, Evans RG, Denton KM: Sex differences in the renal vascular response to angiotensin II involves the Mas receptor. Acta Physiol (Oxf) 206, 150156 (2012)

    • Search Google Scholar
    • Export Citation
  • 28.

    Sampaio WO, Nascimento AAS, Santos RAS: Regulation of cardiovascular signaling by kinins and products of similar converting enzyme systems-systemic and regional hemodynamic effects of angiotensin-(1–7) in rats. Am. J. Phsiol. Heart Circ. Physiol. 284, H1985H1994 (2003)

    • Search Google Scholar
    • Export Citation
  • 29.

    Sampson AK, Moritz KM, Denton KM: Postnatal ontogeny of angiotensin receptors and ACE2 in male and female rats. Gend. Med. 9, 2132 (2012)

    • Search Google Scholar
    • Export Citation
  • 30.

    Santos RA, Campagnole-Santos MJ, Andrade SlP: Angiotensin-(1–7): an update. Regul. Pept. 91, 4562 (2000)

  • 31.

    Santos RA, Simões e Silva AC, Maric C, Silva DM, Machado RP, de Buhr I, Heringer-Walther S, Pinheiro SV, Lopes MT, Bader M, Mendes EP, Lemos VS, Campagnole-Santos MJ, Schultheiss HP, Speth R, Walther T: Angiotensin-(1–7) is an endogenous ligand for the G protein-coupled receptor Mas. Proc. Natl. Acad Sci. USA 100, 82588263 (2003)

    • Search Google Scholar
    • Export Citation
  • 32.

    Santos RA, Ferreira AJ, Simões e Silva AC: Recent advances in the angiotensin-converting enzyme 2-angiotensin (1–7)-Mas axis. Exp. Physiol. 93, 519527 (2008)

    • Search Google Scholar
    • Export Citation
  • 33.

    Santos RA, Haibara AS, Campagnole-Santos MJ, Simões E Silva AC, Paula RD, Pinheiro SV: Scientific contributions-characterization of a new selective antagonist for angiotensin-(1–7), D-pro7-angiotensin-(1–7). Hypertension 41, 737743 (2003)

    • Search Google Scholar
    • Export Citation
  • 34.

    Silbiger S, Neugarten J: Gender and human chronic renal disease. Gend. Med. 5 Suppl A, S3S10 (2008)

  • 35.

    Silva-Antonialli MM, Tostes RC, Fernandes L, Fior-Chadi DR, Akamine EH, Carvalho MH: A lower ratio of AT1/AT2 receptors of angiotensin II is found in female than in male spontaneously hypertensive rats. Cardiovasc. Res. 62, 587593 (2004)

    • Search Google Scholar
    • Export Citation
  • 36.

    Skeggs LT, Lentz KE, Kahn JR, Hochstrasser H: Kinetics of the reaction of renin with nine synthetic peptide substrates. J. Exp. Med. 128, 1334 (1968)

    • Search Google Scholar
    • Export Citation
  • 37.

    Sullivan JC: Sex and the renin-angiotensin system: inequality between the sexes in response to RAS stimulation and inhibition. Am. J. Physiol. Regul. Integr. Comp. Physiol. 294, R1220R1226 (2008)

    • Search Google Scholar
    • Export Citation
  • 38.

    Sullivan JC, Bhatia K, Yamamoto T, Elmarakby AA: Angiotensin (1–7) receptor antagonism equalizes angiotensin II–induced hypertension in male and female spontaneously hypertensive rats. Hypertension 56, 65866 (2010)

    • Search Google Scholar
    • Export Citation
  • 39.

    Tom B, de Vries R, Saxena PR, Danser AJ: Bradykinin potentiation by angiotensin-(1–7) and ACE inhibitors correlates with ACE C-and N-domain blockade. Hypertension 38, 9599 (2001)

    • Search Google Scholar
    • Export Citation
  • 40.

    Touyz RM, Schiffrin EL: Signal transduction mechanisms mediating the physiological and pathophysiological actions of angiotensin II in vascular smooth muscle cells. Pharmacol. Rev. 52, 639672 (2000)

    • Search Google Scholar
    • Export Citation
  • 41.

    Tschope C, Schultheiss H-P, Walther T: Multiple interactions between the renin-angiotensin and the kallikreinkinin systems: role of ACE inhibition and AT1 receptor blockade. J. Cardiovasc. Pharmacol. 39, 478487 (2002)

    • Search Google Scholar
    • Export Citation
  • 42.

    Vallon V, Heyne N, Richter K, Khosla MC, Fechter K: [7-D-ala]-angiotensin 1–7 blocks renal actions of angiotensin 1-7 in the anesthetized rat. J. Cardiovasc. Pharmacol. 32, 164167 (1998)

    • Search Google Scholar
    • Export Citation
  • 43.

    Walters PE, Gaspari TA, Widdop RE: Angiotensin-(1–7) acts as a vasodepressor agent via angiotensin II type 2 receptors in conscious rats. Hypertension 45, 960966 (2005)

    • Search Google Scholar
    • Export Citation
  • 44.

    Zhu Z, Zhong J, Zhu S, Liu D, van der Giet M, Tepel M: Angiotensin-(1–7) inhibits angiotensin II-induced signal transduction. J. Cardiovasc. Pharmacol. 40, 693700 (2002)

    • Search Google Scholar
    • Export Citation
  • 45.

    Zhuo JL, Li XC: New insights and perspectives on intrarenal renin-angiotensin system: focus on intracrine/ intracellular angiotensin II. Peptides 32, 15511565 (2011)

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

  • Impact Factor (2016): 0.571
  • 5-year Impact Factor (2016): 0.675
  • Physiology (Medical) Quartile score (2016): Q4
  • SJR Indicator (2016): 0.276
  • H-Index (2016): H-Index (2016): 23

Language: English

Founded in 1950
Publication: One volume of four issues annually
Publication Programme: 2016: Vol. 103
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded
  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

      Benedek, György (Szeged)
      Benyó, Zoltán (Budapest)
      Boros, Mihály (Szeged)
      Chernoch, László (Debrecen)
      Détári, László (Budapest)
      Hamar, János (Budapest)
      Hantos, Zoltán (Szeged)
      Hunyady, László (Budapest)
      Imre, Sándor (Debrecen)
      Jancsó, Gábor (Szeged)
      Karádi, Zoltán (Pécs)
      Kovács, László (Debrecen)
      Palkovits, Miklós (Budapest)
      Papp, Gyula (Szeged)
      Pavlik, Gábor (Budapest)
      Spät, András (Budapest)
      Szabó, Gyula (Szeged)
      Szelényi, Zoltán (Pécs)
      Szolcsányi, János (Pécs)
      Szollár, Lajos (Budapest)
      Szücs, Géza (Debrecen)
      Telegdy, Gyula (Szeged)
      Toldi, József (Szeged)
      Tósaki, Árpád (Debrecen)

International Editorial Board

      R. Bauer (Jena)
      W. Benjelloun (Rabat)
      A. W. Cowley Jr. (Milwaukee)
      D. Djuric (Belgrade)
      C. Fry (London)
      S. Greenwald (London)
      O. Hänninen (Kuopio)
      H. G. Hinghofer-Szalkay (Graz)
      Th. Kenner (Graz)
      Gy. Kunos (Richmond)
      M. Mahmoudian (Tehran)
      T. Mano (Seki, Gifu)
      G. Navar (New Orleans)
      H. Nishino (Nagoya)
      O. Petersen (Liverpool)
      U. Pohl (Münich)
      R. S. Reneman (Maastricht)
      A. Romanovsky (Phoenix)
      G. M. Rubanyi (Richmond)
      T. Sakata (Oita)
      A. Siddiqui (Karachi)
      Cs. Szabo (Beverly)
      E. Vicaut (Paris)
      N. Westerhof (Amsterdam)
      L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: aph@semmelweis-univ.hu