View More View Less
  • 1 “Iuliu Hatieganu” University of Medicine and Pharmacy, Cluj-Napoca, Romania
  • 2 University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $752.00

Background

To investigate the protective effects of Quercetin administration associated with chronic moderate exercise (training) on oxidative stress in the liver in streptozotocin-induced diabetic rats.

Methods

Diabetic rats that performed exercise training were subjected to a swimming training program (1 hour/day, 5 days/week, 4 weeks). The diabetic rats received natural antioxidant, Quercetin (20 mg/kg body weight/day) for 4 weeks. At the end of the study, all animals were sacrificed and liver samples were collected for estimation: some oxidative stress markers (malondialdehyde, MDA and protein carbonyls groups, PC), the activity of antioxidant enzymes (superoxide dismutase, SOD and catalase, CAT), reduced glutathione (GSH) level and reduced (GSH) and oxidized (GSSG) glutathione ratio.

Results

Diabetic rats submitted to exercise training showed significantly increased the oxidative stress markers (MDA and PC) and a reduction of antioxidant enzyme (SOD and CAT) activity, GSH level and GSH/ GSSG ratio in hepatic tissues. A decrease in the levels of oxidative stress markers associated with elevated activity of antioxidant enzymes, the GSH level and GSH/GSSG ratio in the hepatic tissue were observed in Quercetin-treated diabetic trained rats.

Conclusions

These findings suggest that Quercetin administration in association with chronic moderate exercise exerts a protective effect in diabetes by attenuating hyperglycemia-mediated oxidative stress in hepatic tissue.

  • 1.

    Alam MM, Meerza D, Naseem I: Protective effect of quercetin on hyperglycemia, oxidative stress and DNA damage in alloxan induced type 2 diabetic mice. Alam Life Sci. 109, 814 (2014)

    • Search Google Scholar
    • Export Citation
  • 2.

    Arya A, Jamil Al-Obaidi MM, Shahid N, Bin Noordin MI, Looi CY, Wongd WF, Khaing SL, Mustafa MR: Synergistic effect of quercetin and quinic acid by alleviating structural degeneration in the liver, kidney and pancreas tissues of STZ-induced diabetic rats: A mechanistic study. Food Chem. Toxicol. 71, 183196 (2014)

    • Search Google Scholar
    • Export Citation
  • 3.

    Arshadi S, Bakhtiyari S, Haghani K, Valizadeh A: Effects of Fenugreek seed extract and swimming endurance training on plasma glucose and cardiac antioxidant enzymes activity in streptozotocin-induced diabetic rats. Osong Public Health Res. Perspect. 6, 8793 (2015)

    • Search Google Scholar
    • Export Citation
  • 4.

    Babujanarthanam R, Kavitha P, Mahadeva Rao US, Pandian MR: Quercitrin a bioflavonoid improves the antioxidant status in streptozotocin-induced diabetic rat tissues. Mol. Cell Biochem. 358, 121129 (2011)

    • Search Google Scholar
    • Export Citation
  • 5.

    Bakhshaeshi M, Khaki A, Fathiazad F, Khaki AA, Ghadamkheir E: Anti-oxidative role of quercetin derived from Allium cepa on aldehyde oxidase (OX-LDL) and hepatocytes apoptosis in streptozotocin-induced diabetic rat. Asian Pac. J. Trop. Biomed. 2, 528531 (2012)

    • Search Google Scholar
    • Export Citation
  • 6.

    Boots AW, Haenen GR, Bast A: Health effects of quercetin: from antioxidant to nutraceutical. Eur. J. Pharmacol. 585, 325337 (2008)

  • 7.

    Chis IC, Ungureanu MI, Marton A, Simedrea R, Muresan A, Postesc, ID, Decea N: Antioxidant effects of a grape seed extract in a rat model of diabetes mellitus. Diab. Vasc. Dis. Res. 6, 200204 (2009)

    • Search Google Scholar
    • Export Citation
  • 8.

    Conti M, Morand PC, Levillain P: Improved fluoromeric determination of malonaldehyde. Clin. Chem. 37, 12731275 (1991)

  • 9.

    Coskun O, Ocakci A, Bayraktaroglu T, Kanter M: Exercise training prevents and protects streptozotocininduced oxidative stress and beta-cell damage in rat pancreas. Tohoku J. Exp. Med. 203, 14554 (2004)

    • Search Google Scholar
    • Export Citation
  • 10.

    Di Naso FC, Simoes Dias A, Porawski M, Marroni NA: Exogenous superoxide dismutase: action on liver oxidative stress in animals with streptozotocin-induced diabetes. Exp. Diab. Res., Article ID 754132, 6 pages (2011)

    • Search Google Scholar
    • Export Citation
  • 11.

    Dias AS, Porawski M, Alonso M, Marroni N, Collado PS, González-Gallego J: Quercetin decreases oxidative stress, NF-kappaB activation, and iNOS over expression in liver of streptozotocin-induced diabetic rats. J. Nutr. 135, 22992304 (2005)

    • Search Google Scholar
    • Export Citation
  • 12.

    Eleazu CO, Eleazu KC, Chukwuma S, Essien UN: Review of the mechanism of cell death resulting from streptozotocin challenge in experimental animals, its practical use and potential risk to humans. J. Diabetes Metab. Disord. 12, 60 (2013)

    • Search Google Scholar
    • Export Citation
  • 13.

    Ewis SA, Abdel-Rahman MS: Effect of metformin on glutathione and magnesium in normal and streptozotocininduced diabetic rats. J. Appl. Toxicol. 15, 387390 (1995)

    • Search Google Scholar
    • Export Citation
  • 14.

    Formagio ASN, Kassuya CAL, Neto FF, Volobuff CRF, Iriguchi EKK, Vieira M, Foglio MA: The flavonoid content and antiproliferative, hypoglycaemic, anti-inflammatory and free radical scavenging activities of Annona dioica St. Hill. BMC Complement. Altern. Med. 13, 1422 (2013)

    • Search Google Scholar
    • Export Citation
  • 15.

    Gomes RJ, de Mello MA, Caetano FH, Sibuya CY, Anaruma CA, Rogatto GP, Pauli JR, Luciano E: Effects of swimming training on bone mass and the GH/IGF-1 axis in diabetic rats. Growth Horm. IGF Res. 16, 326331 (2006)

    • Search Google Scholar
    • Export Citation
  • 16.

    Guoyao W. Fang ZY, Yag S, Lupton RJ, Turner DN: Glutathione metabolism and implications for health. J. Nutr. 134, 489492 (2004)

  • 17.

    Hsieh PS, Hsieh YJ: Impact of liver diseases on the development of type 2 diabetes mellitus. World J. Gastroenterol. 17, 52405245 (2011)

    • Search Google Scholar
    • Export Citation
  • 18.

    Inoguchi T, Li P, Umeda F, Yu HY, Kakimoto M, Imamura M, Aoki T, Etoh T, Hashimoto T, Naruse M, Sano H, Utsumi H, Nawata H: High glucose level and free fatty acid stimulate reactive oxygen species production through protein kinase C-dependent activation of NAD(P)H oxidase in cultured vascular cells. Diabetes 49, 19391945 (2000)

    • Search Google Scholar
    • Export Citation
  • 19.

    Jeong SM, Kang MJ, Choi HN, Kim JH, Kim JI: Quercetin ameliorates hyperglycemia and dyslipidemia and improves antioxidant status in type 2 diabetic db/db mice. Nutr. Res. Pract. 6, 201207 (2012)

    • Search Google Scholar
    • Export Citation
  • 20.

    Kakkar P, Das B, Viswanthan PN: A modified spectrophotometric assay of superoxide dismutase (SOD). Indian J. Biochem. Biophys. 21, 130132 (1984)

    • Search Google Scholar
    • Export Citation
  • 21.

    Kamalakkannan N, Stanely M, Prince P: The antihyperglycaemic and antioxidant effect of rutin, a polyphenolic flavonoid, in streptozotocin-induced diabetic Wistar rats. Basic Clin. Pharmacol. Toxicol. 98, 97103 (2006)

    • Search Google Scholar
    • Export Citation
  • 22.

    Kanter M, Aktas C, Erboga M: Protective effects of quercetin against apoptosis and oxidative stress in streptozotocin-induced diabetic rat testis. Food Chem. Toxicol. 50, 719725 (2012)

    • Search Google Scholar
    • Export Citation
  • 23.

    Lee S, Park Y, Dellsperger KC, Zhang C: Exercise training improves endothelial function via adiponectindependent and independent pathways in type 2 diabetic mice. Am. J. Physiol. Heart. Circ. Physiol. 301, 306314 (2011)

    • Search Google Scholar
    • Export Citation
  • 24.

    Lucchesi AN, Freitas NT, Cassettari LL, Marques SF, Spadella CT: Diabetes mellitus triggers oxidative stress in the liver of alloxan-treated rats: a mechanism for diabetic chronic liver disease. Acta Cir. Bras. 28, 502508 (2013)

    • Search Google Scholar
    • Export Citation
  • 25.

    Moussa SA: Oxidative stress in diabetes mellitus. Romanian J. Biophys. 18, 225236 (2008)

  • 26.

    Mrowicka M: The role of disorders of the prooxidant-antioxidant system in diabetes etiopathology. Postepy. Hig. Med. Dosw. 65, 534541 (2011)

    • Search Google Scholar
    • Export Citation
  • 27.

    Nagasawa T, Tabata N, Ito Y, Aiba Y, Nishizawa N, Kitts DD: Dietary G-rutin suppresses glycation in tissue proteins of streptozotocin-induced diabetic rats. Mol. Cell Biochem. 252, 141147 (2003)

    • Search Google Scholar
    • Export Citation
  • 28.

    Oelze M, Knorr M, Schuhmacher S, Heeren T, Otto C, Schulz E, Reifenberg K, Wenzel P, Münzel T, Daiber A: Vascular dysfunction in streptozotocin-induced experimental diabetes strictly depends on insulin deficiency. J. Vasc. Res. 48, 275284 (2011)

    • Search Google Scholar
    • Export Citation
  • 29.

    Pippenger CE, Browne RW, Armstrong D (1998): Regulatory antioxidant enzymes. In: Methods in Molecular Biology, vol. 108: Free Radicals and Antioxidant Protocols D. Armstrong. Humana Press Inc. Totowa NJ. pp 299309

    • Search Google Scholar
    • Export Citation
  • 30.

    Prabakaran D, Ashokkumar N: Protective effect of esculetin on hyperglycemia-mediated oxidative damage in the hepatic and renal tissues of experimental diabetic rats. Biochimie 95, 366373 (2013)

    • Search Google Scholar
    • Export Citation
  • 31.

    Ravi Kiran T, Subramanyam MV, Asha Devi S: Swim exercise training and adaptations in the antioxidant defense system of myocardium of old rats: relationship to swim intensity and duration. Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 137, 187196 (2004)

    • Search Google Scholar
    • Export Citation
  • 32.

    Reznick AZ, Packer L: Oxidative damage to proteins: spectrophotometric method for carbonyl assay. Methods Enzymol. 233, 347357 (1994)

    • Search Google Scholar
    • Export Citation
  • 33.

    Rocha RE, Coelho I, Pequito DC, Yamagushi A, Borghetti G, Yamazaki RK, Brito GA, Machado J, Kryczyk M, Nunes EA, Venera G, Fernandes LC: Interval training attenuates the metabolic disturbances in type 1 diabetes rat model. Arq. Bras. Endocrinol. Metabol. 57, 594602 (2013)

    • Search Google Scholar
    • Export Citation
  • 34.

    Szkudelski T: The mechanism of alloxan and streptozotocin action of ß-cells of the rat pancreas. Physiol. Res. 50, 537546 (2001)

  • 35.

    Teixeira de Lemos E, Pinto R, Oliveira J, Garrido P, Sereno J, Mascarenhas-Melo F, Pascoa-Pinheiro J, Teixeira F, Reis F: Differential effects of acute (extenuating) and chronic (training) exercise on inflammation and oxidative stress status in an animal model of type 2 diabetes mellitus. Mediators of Inflammation. Article ID 253061, 8 pages (2011)

    • Search Google Scholar
    • Export Citation
  • 36.

    Vats P, Singh VK, Singh SN, Singh SB: Glutathione metabolism under high-altitude stress and effect of antioxidant supplementation. Aviation, Space and Environmental Medicine. 79, 11061111 (2008)

    • Search Google Scholar
    • Export Citation
  • 37.

    Yang H, Jin X, Kei Lam CW, Yan SK: Oxidative stress and diabetes mellitus. Clin. Chem. Lab. Med. 49, 17731782 (2011)

  • 38.

    Zhang H, Zhang C: Vasoprotection by dietary supplements and exercise: role of TNFα signaling. Exp. Diab. Res. Article ID 972679, 6 pages (2012)

    • Search Google Scholar
    • Export Citation

The author instruction is available in PDF.

Please, download the file from HERE

  • Impact Factor (2016): 0.571
  • 5-year Impact Factor (2016): 0.675
  • Physiology (Medical) Quartile score (2016): Q4
  • SJR Indicator (2016): 0.276
  • H-Index (2016): H-Index (2016): 23

Language: English

Founded in 1950
Publication: One volume of four issues annually
Publication Programme: 2016: Vol. 103
Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • EMBASE/Excerpta Medica
  • Global Health
  • Index Copernicus
  • Index Medicus
  • Medline
  • Referativnyi Zhurnal
  • Science Citation Index Expanded
  • SCOPUS

 

Subscribers can access the electronic version of every printed article.

Senior editors

Editor(s)-in-Chief: Rosivall, László

Honorary Editor(s)-in-Chief): Monos, Emil

Managing Editor(s): Bartha, Jenő; Berhidi, Anna

Co-editor(s): Koller, Ákos; Lénárd, László; Szénási, Gábor

Assistant Editor(s): G. Dörnyei (Budapest), Zs. Miklós (Budapest), Gy. Nádasy (Budapest)

Hungarian Editorial Board

      Benedek, György (Szeged)
      Benyó, Zoltán (Budapest)
      Boros, Mihály (Szeged)
      Chernoch, László (Debrecen)
      Détári, László (Budapest)
      Hamar, János (Budapest)
      Hantos, Zoltán (Szeged)
      Hunyady, László (Budapest)
      Imre, Sándor (Debrecen)
      Jancsó, Gábor (Szeged)
      Karádi, Zoltán (Pécs)
      Kovács, László (Debrecen)
      Palkovits, Miklós (Budapest)
      Papp, Gyula (Szeged)
      Pavlik, Gábor (Budapest)
      Spät, András (Budapest)
      Szabó, Gyula (Szeged)
      Szelényi, Zoltán (Pécs)
      Szolcsányi, János (Pécs)
      Szollár, Lajos (Budapest)
      Szücs, Géza (Debrecen)
      Telegdy, Gyula (Szeged)
      Toldi, József (Szeged)
      Tósaki, Árpád (Debrecen)

International Editorial Board

      R. Bauer (Jena)
      W. Benjelloun (Rabat)
      A. W. Cowley Jr. (Milwaukee)
      D. Djuric (Belgrade)
      C. Fry (London)
      S. Greenwald (London)
      O. Hänninen (Kuopio)
      H. G. Hinghofer-Szalkay (Graz)
      Th. Kenner (Graz)
      Gy. Kunos (Richmond)
      M. Mahmoudian (Tehran)
      T. Mano (Seki, Gifu)
      G. Navar (New Orleans)
      H. Nishino (Nagoya)
      O. Petersen (Liverpool)
      U. Pohl (Münich)
      R. S. Reneman (Maastricht)
      A. Romanovsky (Phoenix)
      G. M. Rubanyi (Richmond)
      T. Sakata (Oita)
      A. Siddiqui (Karachi)
      Cs. Szabo (Beverly)
      E. Vicaut (Paris)
      N. Westerhof (Amsterdam)
      L. F. Zhang (Xi'an)

Editorial Office:
Akadémiai Kiadó Zrt.
Prielle Kornélia u. 21–35, H-1117 Budapest, Hungary

Editorial Correspondence:
Acta Physiologica Hungarica
Semmelweis University, Faculty of Medicine Institute of Pathophysiology
Nagyvárad tér 4, H-1089 Budapest, Hungary
Phone/Fax: +36-1-2100-100
E-mail: aph@semmelweis-univ.hu