The Exercise Addiction Inventory (EAI) is a brief validated instrument adopted by many to assess the risk of exercise addiction. Its revised version (the EAI-R) has been recently validated in English with a predominantly male sample. The current work examined the model fit, validity and reliability of the Hungarian version of the EAI-R (EAI-R-HU). This cross-sectional study was conducted online. A convenience sample of regular exercisers (n = 253) completed the EAI-R-HU and answered demographic questions. Confirmatory factor analysis revealed a good model fit for the Hungarian version of the instrument. The internal reliability of the EAI-R-HU was (Cronbach’s α) .71. Considering the top 20% of the EAI-R-HU scores, 5.1% of the sample was at risk of exercise addiction. Team exercisers did not differ from individual exercisers in the risk of exercise addiction. Age and exercise characteristics predicted weakly but statistically significantly the risk of exercise addiction. The EAI-R-HU possesses a good model fit, and its internal reliability is acceptable. These findings complement the original revision of the EAI-R, based on a largely (87.7%) male sample compared to the current research primarily based on female participants (76.7%). While cultural differences might exist, the present results encourage the use of the EAI-R with women too and with Hungarian samples, in general.
A Testedzésfüggőség Kérdőív (EAI) egy rövid, validált eszköz, amelyet a testedzésfüggőség kockázatának felmérésére használnak. Az angol nyelvű módosított változatát (EAI-R) nemrégiben egy többségében férfiakból álló mintán validálták. Jelen kutatás a magyar változat (EAI-R-HU) egyfaktoros elméleti struktúrájának illeszkedését, validitását, és a kérdőív belső megbízhatóságát vizsgálta. A hozzáférhetőségi mintavétellel zajló adatgyűjtés online történt. Rendszeresen edző önkéntesek (n = 253) kitöltötték a módosított EAI-t (EAI-R-HU) és megválaszolták a demográfiai kérdéseket. A megerősítő faktoranalízis jó modellillesztést mutatott, a skála belső megbízhatósága (Cronbach-α) pedig 0,71 volt. Az EAI-R-HU pontszámok felső 20%-át figyelembe véve, a jelen minta 5,14%-a volt feltételezhetően a testedzésfüggőség kockázatának kitéve. A csoportban edzők nem különböztek az egyéni edzést végzőktől a testedzésfüggőség kockázatát illetően. Az életkor és a testmozgás egyes jellemzői gyengén, de statisztikailag szignifikánsan prognosztizálták a testedzésfüggőség kockázatát. Az eredmények alapján az EAI-R-HU jó modellalkalmazással rendelkezik és a belső megbízhatósága elfogadható. Ezek a megállapítások kiegészítik az angol EAI-R változatát, amely nagyrészt (87,7%) férfi minta alapján jött létre, szemben a jelen kutatással, amely elsősorban női résztvevőkön alapszik (76,7%). Bár létezhetnek kulturális különbségek, a jelenlegi eredmények ösztönzik az EAI-R alkalmazását a nőknél is és az EAI-R-HU felhasználását magyar kutatásokban.
Allen, I. E., & Seaman, C. A. (2007). Likert scales and data analyses. Quality Progress, 40(7), 64–65. Retrieved November 2, 2018, from: http://rube.asq.org/quality-progress/2007/07/statistics/likert-scales-and-data-analyses.html
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Washington, DC: American Psychiatric Association
Baumgartner, H., & Homburg, C. (1996). Applications of structural equation modeling in marketing and consumer research: A review. International Journal of Research in Marketing, 13(2), 139–161.
Borg, G. (1985). An introduction to Borg’s RPE Scale. Ithaca, NY: Movement Publications.
De La Vega, R., Parastatidou, I.S., Ruíz-Barquín, R., & Szabo, A. (2016). Exercise addiction in athletes and leisure exercisers: The moderating role of passion. Journal of Behavioral Addictions, 5(2), 325–331.
Demetrovics, Z., & Kurimay T. (2008). Testedzésfüggőség: a sportolás mint addikció. Psychiatria Hungarica, 23(2), 129–141.
Di Lodovico, L., Poulnais, S., & Gorwood, P. (2019). Which sports are more at risk of physical exercise addiction: A systematic review. Addictive Behaviors, 93, 257–262.
Dumitru, D., Dumitru, T., & Maher, A. (2018). A systematic review of exercise addiction: examining gender differences. Journal of Physical Education and Sport, 18(3), 1738–1747.
Egorov, A. Y., & Szabo, A. (2013). The exercise paradox: An interactional model for a clearer conceptualization of exercise addiction. Journal of Behavioral Addictions, 2(4), 199–208.
Fagerland, M. W. (2012). t-Tests, nonparametric tests, and large studies—a paradox of statistical practice? BMC Medical Research Methodology, 12(1). DOI:
Frey, B. (2018). The SAGE encyclopedia of educational research, measurement, and evaluation (Vols. 1–4). Thousand Oaks, CA: SAGE Publications, Inc. DOI:
Froehlich, J. (1995). Overtraining syndrome. In: Heil, J. (Ed.). Psychology of Sport Injury (59–70). Champaign, IL: Human Kinetics
Goodman, L. A. (1961). Snowball sampling. Annals of Mathematical Statistics, 32(1), 148–170.
Griffiths, M. D. (2005). A “components” model of addiction within a biopsychosocial framework. Journal of Substance Use, 10(4), 191–197.
Griffiths, M. D., Szabo, A., & Terry, R. (2005). The exercise addiction inventory: A quick and easy screening tool for health practitioners. British Journal of Sports Medicine, 39(6), e30–e30. DOI:
Griffiths, M. D., Urbán, R., Demetrovics, Z., Lichtenstein, M. B., De La Vega, R., Kun, B., et al. (2015). A cross-cultural re-evaluation of the Exercise Addiction Inventory (EAI) in five countries. Sports Medicine-Open, 1(1), 5. DOI:
Hausenblas, H. A., & Downs, D. S. (2002). How much is too much? The development and validation of the Exercise Dependence Scale. Psychology and Health, 17(4), 387–404.
Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multi-disciplinary Journal, 6(1), 1–55.
Kline, R. B. (2015). Principles and practice of structural equation modeling. New York, NY: Guilford Publications
Kovacsik, R., Griffiths, M. D., Pontes, H. M., Soós, I., De La Vega, R., Ruíz-Barquín, R., et al. (2018). The role of passion in exercise addiction, exercise volume, and exercise intensity in long-term exercisers. International Journal of Mental Health and Addiction, 17(6), 1389–1400.
Kovacsik, R., Soós, I., De La Vega, R., Ruíz-Barquín, R., & Szabo, A. (2020). Passion and exercise addiction: Healthier profiles in team than in individual sports. International Journal of Sport and Exercise Psychology, 18(2), 176–186.
Lichtenstein, M. B., Christiansen, E., Bilenberg, N., & Støving, R. K. (2014a). Validation of the exercise addiction inventory in a Danish sport context. Scandinavian Journal of Medicine and Science in Sports, 24(2), 447–453.
Lichtenstein, M. B., Larsen, K. S., Christiansen, E., Støving, R. K., & Bredahl, T. V. G. (2014b). Exercise addiction in team sport and individual sport: Prevalences and validation of the exercise addiction inventory. Addiction Research and Theory, 22(5), 431–437.
Lukács, A., Sasvári, P., Varga, B., & Mayer, K. (2019). Exercise addiction and its related factors in amateur runners. Journal of Behavioral Addictions, 8(2), 343–349.
Meerkerk, G. J., Van Den Eijnden, R. J., Vermulst, A. A., & Garretsen, H. F. (2009). The compulsive internet use scale (CIUS): some psychometric properties. Cyberpsychology and Behavior, 12(1), 1–6. DOI:
Mónok, K., Berczik, K., Urbán, R., Szabo, A., Griffiths, M. D., Farkas, J., et al. (2012). Psychometric properties and concurrent validity of two exercise addiction measures: A population wide study. Psychology of Sport and Exercise, 13(6), 739–746.
Qualtrics (2017). Survey research suite: Research coreTM. Provo, Utah, USA. Retrieved November 2, 2018, from: http://www.qualtrics.com
Pett, M. A. (2015). Nonparametric statistics for health care research: Statistics for small samples and unusual distributions. Washington, DC: Sage
Schmitt, N. (1996). Uses and abuses of coefficient alpha. Psychological Assessment, 8(4), 350–353.
Shi, D., Lee, T., & Maydeu-Olivares, A. (2019). Understanding the model size effect on SEM fit indices. Educational and Psychological Measurement, 79(2), 310–334.
Szabo, A. (2010). Addiction to exercise: A symptom or a disorder? Hauppauge, NY: Nova Science Publishers, Incorporated
Szabo, A. (2018). Addiction, passion, or confusion? New theoretical insights on exercise addiction research from the case study of a female body builder. Europe’s Journal of Psychology, 14(2), 296–316.
Szabo, A., Griffiths, M. D., De La Vega Marcos, R., Mervó, B., & Demetrovics, Z. (2015). Methodological and conceptual limitations in exercise addiction research. Yale Journal of Biology and Medicine, 88(3), 303–308.
Szabo, A., & Kovacsik, R. (2019). When passion appears, exercise addiction disappears. Swiss Journal of Psychology, 78(3-4), 137–142.
Szabo, A., Pinto, A., Griffiths, M. D., Kovacsik, R., & Demetrovics, Z. (2019). The psychometric evaluation of the Revised Exercise Addiction Inventory: Improved psychometric properties by changing item response rating. Journal of Behavioral Addictions, 8(1), 157–161.
Taasoobshirazi, G., & Wang, S. (2016). The performance of the SRMR, RMSEA, CFI, and TLI: An examination of sample size, path size, and degrees of freedom. Journal of Applied Quantitative Methods, 11(3), 31–39.
Taber, K. S. (2017). The use of Cronbach’s alpha when developing and reporting research instruments in science education. Research in Science Education, 48(6), 1273–1296.
Terry, A., Szabo, A., & Griffiths, M. (2004). The exercise addiction inventory: A new brief screening tool. Addiction Research and Theory, 12(5), 489–499.