View More View Less
  • 1 University of Life Sciences Lublin Department of Biotechnology, Human Nutrition and Science of Food Commodities Skromna 8 20-704 Lublin Poland
  • | 2 Universty of Life Sciences Lublin Department of Fruit, Vegetables and Fungi Technology Skromna 8 20-704 Lublin Poland
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

The objective of this work was to assess the impact of various NaCl concentrations on Lactobacillus rhamnosus OXY viability after freeze-drying. Osmotic stress was applied during the exponential growth phase of bacterial culture. At salt concentrations between 0.2–0.5 M, a high biomass concentration and a significant increase in cell viability after lyophilisation was observed. An analysis of two-dimensional protein gels indicated the presence of shock proteins, for example, GroEL, ClpB, DnaK, TF, which provide resistance during freeze-drying and subsequent storage. On the basis of these results, it is recommended that lactic acid bacteria cultures be sub-lethally treated with 0.5 M NaCl before freeze-drying.

  • Bâati, L., Fabre-Gea, C., Auriol, D. & Blanc, P.J. (2000): Study of the cryotolerance of Lactobacillus acidophilus: Effect of culture and freezing conditions on the viability and cellular protein levels. Int. J. Fd Microbiol., 59, 241–247.

    Blanc PJ , 'Study of the cryotolerance of Lactobacillus acidophilus: Effect of culture and freezing conditions on the viability and cellular protein levels ' (2000 ) 59 Int. J. Fd Microbiol. : 241 -247.

    • Search Google Scholar
  • Billi, D. & Potts, M. (2002): Life and death of dried prokaryotes. Res. Microbiol., 153, 7–12.

    Potts M , 'Life and death of dried prokaryotes ' (2002 ) 153 Res. Microbiol. : 7 -12.

  • Carvalho, A.S., Silva, J., Ho, P., Teixeira, P., Malcata, F.X. & Gibbs, P. (2004): Relevant factors for the preparation of freeze-dried lactic acid bacteria. Int. Dairy J., 14, 835–847.

    Gibbs P , 'Relevant factors for the preparation of freeze-dried lactic acid bacteria ' (2004 ) 14 Int. Dairy J. : 835 -847.

    • Search Google Scholar
  • Corcoran, B.M., Stanton, C., Fitzgerald, G. & Ross R.P. (2008): Life under stress: the probiotic stress response and how it may be manipulated. Curr. Pharmaceutical Design, 14, 1382–1399.

    Ross RP , 'Life under stress: the probiotic stress response and how it may be manipulated ' (2008 ) 14 Curr. Pharmaceutical Design : 1382 -1399.

    • Search Google Scholar
  • Darvall, J.G. (2000): Preservation of microorganisms. Culture, 21(2), 1–5.

    Darvall JG , 'Preservation of microorganisms ' (2000 ) 21 Culture : 1 -5.

  • De Angelis, M. & Gobbetti, M. (2004): Environmental stress responses in Lactobacillus: A review. Proteomics, 4, 106–122.

    Gobbetti M , 'Environmental stress responses in Lactobacillus: A review ' (2004 ) 4 Proteomics : 106 -122.

    • Search Google Scholar
  • De Man, J.C., Rogosa, M. & Sharpe, E. (1960): A medium for the cultivation of the lactobacilli. J. Appl. Bacteriol., 23, 130–135.

    Sharpe E , 'A medium for the cultivation of the lactobacilli ' (1960 ) 23 J. Appl. Bacteriol. : 130 -135.

    • Search Google Scholar
  • Dunne, C., O’Mahony, L., Murphy, L., Thornton, G., Morrissey, D., O’Halloran, S., Feeney, M., Flynn, S., Fitzgerald, G., Daly, C., Kiely, B., O’Sullivan, G.C., Shanahan, F. & Collins, J.K. (2001): In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am. J. Clin. Nutr., 73, 386–392.

    Collins JK , 'In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings ' (2001 ) 73 Am. J. Clin. Nutr. : 386 -392.

    • Search Google Scholar
  • Fonseca, F., Beal, C. & Corrieu, G. (2001): Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage. Cryobiology, 43, 189–198.

    Corrieu G , 'Operating conditions that affect the resistance of lactic acid bacteria to freezing and frozen storage ' (2001 ) 43 Cryobiology : 189 -198.

    • Search Google Scholar
  • Gaxiola, R., De Larrinoa, I.F., Villalba, J.M. & Serrano, R. (1992): A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast. EMBO J., 11, 3157–3164.

    Serrano R , 'A novel and conserved salt-induced protein is an important determinant of salt tolerance in yeast ' (1992 ) 11 EMBO J. : 3157 -3164.

    • Search Google Scholar
  • Georgellis, D., Sohlberg, B., Hartl, F.U. & Von Gabain, A. (1995): Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli. Mol. Microbiol., 16, 1259–1268.

    Gabain A , 'Identification of GroEL as a constituent of an mRNA-protection complex in Escherichia coli ' (1995 ) 16 Mol. Microbiol. : 1259 -1268.

    • Search Google Scholar
  • Gousebet, G., Jan, G. & Boyaval, P. (2002): Two-dimensional electrophoretic study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance. Appl. Environ. Microbiol., 68, 1055–1063.

    Boyaval P , 'Two-dimensional electrophoretic study of Lactobacillus delbrueckii subsp. bulgaricus thermotolerance ' (2002 ) 68 Appl. Environ. Microbiol. : 1055 -1063.

    • Search Google Scholar
  • Hendrick, J.P. & Hartl, F.U. (1993): Molecular chaperone functions of heat-shock proteins. Ann. Rev. Biochem., 62, 349–384.

    Hartl FU , 'Molecular chaperone functions of heat-shock proteins ' (1993 ) 62 Ann. Rev. Biochem. : 349 -384.

    • Search Google Scholar
  • Kets, E.P.W. & De Bont, J.A.M. (1994): Protective effect of betaine on survival of L. plantarum subjected to drying. FEMS Microbiol. Lett., 116, 251–256.

    Bont JAM , 'Protective effect of betaine on survival of L. plantarum subjected to drying ' (1994 ) 116 FEMS Microbiol. Lett. : 251 -256.

    • Search Google Scholar
  • Kim, W.S., Park, J.H., Tandianus, J.E., Ren, J., Su, P. & Diun, N.W. (2002): A distinct physiological state of Lactococcus lactis cells that confers survival against a direct and prolonged exposure to severe stresses. FEMS Microbiol. Lett., 212, 203–208.

    Diun NW , 'A distinct physiological state of Lactococcus lactis cells that confers survival against a direct and prolonged exposure to severe stresses ' (2002 ) 212 FEMS Microbiol. Lett. : 203 -208.

    • Search Google Scholar
  • Kim, W.S., Perl, L., Park, J.H., Tandianus, J.E. & Dunn, N.W. (2001): Assessment of stress response of the probiotic Lactobacillus acidophilus. Curr. Microbiol., 43, 346–350.

    Dunn NW , 'Assessment of stress response of the probiotic Lactobacillus acidophilus ' (2001 ) 43 Curr. Microbiol. : 346 -350.

    • Search Google Scholar
  • Kordowska-Wiater, M., Waśko, A., Polak-Berecka, M., Kubik-Komar, A. & Targoński, Z. (2011): Spirulina enhances the viability of Lactobacillus rhamnosus E/N after freeze-drying in a protective medium of sucrose and lactulose. Lett. Appl. Microbiol., 53, 79–83.

    Targoński Z , 'Spirulina enhances the viability of Lactobacillus rhamnosus E/N after freeze-drying in a protective medium of sucrose and lactulose ' (2011 ) 53 Lett. Appl. Microbiol. : 79 -83.

    • Search Google Scholar
  • Laroche, C. & Gervais, P. (2003): Achievement of rapid osmotic dehydration at specific temperatures could maintain high Saccharomyces cerevisiae viability. Appl. Microb. Biotechnol., 60, 743–747.

    Gervais P , 'Achievement of rapid osmotic dehydration at specific temperatures could maintain high Saccharomyces cerevisiae viability ' (2003 ) 60 Appl. Microb. Biotechnol. : 743 -747.

    • Search Google Scholar
  • Linders, J.M., Wolkers, W.F., Hoekstra, F.A. & Van’t Riet, K. (1997): Effect of added carbohydrates on membrane face behavior and survival of dried Lactobacillus plantarum. Cryobiology, 35, 31–40.

    Van’t Riet K , 'Effect of added carbohydrates on membrane face behavior and survival of dried Lactobacillus plantarum ' (1997 ) 35 Cryobiology : 31 -40.

    • Search Google Scholar
  • Lorca, G.L. & Font De Váldez, G. (1999): The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress. Cryobiology., 39, 144–149.

    Font De Váldez G , 'The effect of suboptimal growth temperature and growth phase on resistance of Lactobacillus acidophilus to environmental stress ' (1999 ) 39 Cryobiology : 144 -149.

    • Search Google Scholar
  • Mille, Y., Beney, L. & Gervais, P. (2003): Magnitude and kinetics of rehydration influence the viability of dehydrated E. coli K-12. Biotechnol. Bioengng, 83, 578–582.

    Gervais P , 'Magnitude and kinetics of rehydration influence the viability of dehydrated E. coli K-12 ' (2003 ) 83 Biotechnol. Bioengng : 578 -582.

    • Search Google Scholar
  • Mille, Y., Beney, L. & Gervais, P. (2005): Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test. Biotechnol. Bioengng, 92, 479–484.

    Gervais P , 'Compared tolerance to osmotic stress in various microorganisms: towards a survival prediction test ' (2005 ) 92 Biotechnol. Bioengng : 479 -484.

    • Search Google Scholar
  • Muldrew, K. & McGann, L.E. (1988): Mechanism of intracellular ice formation. Biophys. J., 57, 525–532.

    McGann LE , 'Mechanism of intracellular ice formation ' (1988 ) 57 Biophys. J. : 525 -532.

  • Muldrew, K. & McGann, L.E. (1994): The osmotic rupture hypothesis of intracellular freezing injury. Biophys. J., 66, 532–541.

    McGann LE , 'The osmotic rupture hypothesis of intracellular freezing injury ' (1994 ) 66 Biophys. J. : 532 -541.

    • Search Google Scholar
  • Poolman, B. (2002): Transporters and their roles in LAB cell physiology. Antonie van Leeuwenhoek, 82, 147–164.

    Poolman B , 'Transporters and their roles in LAB cell physiology ' (2002 ) 82 Antonie van Leeuwenhoek : 147 -164.

    • Search Google Scholar
  • Prasad, J., McJarrow, P. & Gopal, P. (2003): Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying. Appl. Environ. Microbiol., 69, 917–925.

    Gopal P , 'Heat and osmotic stress responses of probiotic Lactobacillus rhamnosus HN001 (DR20) in relation to viability after drying ' (2003 ) 69 Appl. Environ. Microbiol. : 917 -925.

    • Search Google Scholar
  • Record, M.T., Anderson, C.F. & Lohman, T.M. (1978): Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: The roles of ion association or release, screening, and ion effects on water activity. Q. Rev. Biophys., 11, 103–178.

    Lohman TM , 'Thermodynamic analysis of ion effects on the binding and conformational equilibria of proteins and nucleic acids: The roles of ion association or release, screening, and ion effects on water activity ' (1978 ) 11 Q. Rev. Biophys. : 103 -178.

    • Search Google Scholar
  • Serrazanetti, D.I., Guerzoni, M.E., Corsetti, A. & Vogel, R. (2009): Metabolic impact and potential exploitation of the stress reactions in lactobacilli. Fd Microbiol., 26, 700–711.

    Vogel R , 'Metabolic impact and potential exploitation of the stress reactions in lactobacilli ' (2009 ) 26 Fd Microbiol. : 700 -711.

    • Search Google Scholar
  • Strasser, S., Neureiter, M., Geppl, M., Braun, R. & Danner, H. (2009): Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria. J. Appl. Microbiol., 107, 167–177.

    Danner H , 'Influence of lyophilization, fluidized bed drying, addition of protectants, and storage on the viability of lactic acid bacteria ' (2009 ) 107 J. Appl. Microbiol. : 167 -177.

    • Search Google Scholar
  • Van De Guchte, M., Serror, P., Chervaux, C., Smokvina, T., Ehrlich, S.D. & Maguin, E. (2002): Stress response in lactic acid bacteria. Antonie Leeuwenhoek, 82, 187–216.

    Maguin E , 'Stress response in lactic acid bacteria ' (2002 ) 82 Antonie Leeuwenhoek : 187 -216.

    • Search Google Scholar
  • Walker, D.C., Girgis, H.S. & Klaenhammer, T.R. (1999): The groESL chaperone operon of Lactobacillus johnsonii. Appl. Environ. Microbiol., 65, 3033–3041. Web page: http://www.ncbi.nlm.nih.gov/guide/proteins/

    Klaenhammer TR , 'The groESL chaperone operon of Lactobacillus johnsonii ' (1999 ) 65 Appl. Environ. Microbiol. : 3033 -3041.

    • Search Google Scholar
  • Wood, J.M., Bremer, E., Csonka, L.N., Kraemer, R., Poolman, B., Van Der Heide, T. & Smith, L.T. (2001): Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comparative. Bioch. Phys. Part A, 130, 437–460.

    Smith LT , 'Osmosensing and osmoregulatory compatible solute accumulation by bacteria ' (2001 ) 130 Comparative. Bioch. Phys. Part A : 437 -460.

    • Search Google Scholar
  • Zink, R., Walker, C., Schmidt, G., Elii, M., Pridmore, D. & Reniero, R. (2000): Impact of multiple stress factors on the survival of dairy lactobacilli. Sci. Aliments, 20, 119–126.

    Reniero R , 'Impact of multiple stress factors on the survival of dairy lactobacilli ' (2000 ) 20 Sci. Aliments : 119 -126.

    • Search Google Scholar

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
sumbission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 10 0 0
May 2021 5 0 0
Jun 2021 7 0 0
Jul 2021 10 0 0
Aug 2021 8 0 0
Sep 2021 6 0 0
Oct 2021 0 0 0