View More View Less
  • a Corvinus University of Budapest, H-1118 Budapest, Villányi út. 29–43, Hungary
  • b Corvinus University of Budapest, H-1118 Budapest, Somlói út 14–16, Hungary
Restricted access

Purchase article

USD  $25.00

1 year subscription (Individual Only)

USD  $878.00

Creep-Recovery Tests (CRT) were measured with a Stable Micros Systems TA.XT-2 precision penetrometer with 75 mm diameter cylinder probe and with different loading stress and creeping-recovery times on gelatine-based candy gum samples, purchased from the local market. The loading force changed from 1 N up to 10 N and the creeping time varied from 30 s up to 120 s. The creeping and the recovering part of CRT curves were approached by Burgersmodel with stretched exponential function. The two elastic moduli and the two viscosities increased linearly in the function of the applied stress. One elastic modulus and the two viscosities also increased, but another elastic modulus slightly decreased in the function of the creeping time. The stretching exponent β practically linearly decreased as the creeping time increased. Based on theoretical considerations, the Kelvin-Voigt-element of Burgers-model can describe the rheological behaviour of sugar content, and the Maxwell-element of Burgers-model can describe the rheological behaviour of gelatine-mesh.

  • BAGLEY, E.B. (1983): Large deformations in testing and processing of food materials. -in: PELEG, M. & BAGLEY, E.B. (Eds): Physical properties of foods. Avi Publishing, Westport, CT, USA, pp. 325342.

    • Search Google Scholar
    • Export Citation
  • BUREY, P., BHANDARI, B.R., RATGARI, R.P.G., HALLEY, P.J. & TORLEY, P.J. (2009): Confectionery gels: A review on formulation, rheological and structural aspects. Int. J. Food Prop., 12(1), 176210.

    • Search Google Scholar
    • Export Citation
  • CSIMA, GY. & VOZÁRY, E. (2013): Effect of measure settings on creep-recovery test results of gum candies. 3rd Synergy Conference, 13–17. October 2013, Gödöllo, Hungary; Synergy 2013 – CD of full papers: paper N06-4-180.

    • Search Google Scholar
    • Export Citation
  • CSIMA, GY., DÉNES, L.D. & VOZÁRY, E. (2014): A possible rheological model of gum candies. Acta Alimentaria, 43(S1), 3644.

  • DJABOUROV, M. (1991): Gelation – A review. Polym. Int., 25(3), 135143.

  • FINER, E.G., FRANKS, F., PHILLIPS, M.C. & SUGGET, A. (1975): Gel formation from solutions of single-chain gelatin. Biopolymers, 14(10), 19952005.

    • Search Google Scholar
    • Export Citation
  • FOEGEDING, E.A. (2007): Rheology and sensory texture of biopolymer gels. Curr. Op. Colloid In., 12(4–5), 242250.

  • JOHNSTON-BANKS, F.A. (1990): Gelatin. -in: HARRIS, P. (Ed.): Food gels.; Elsevier, Essex, pp. 233289.

  • KASAPIS, S., AL-MARHOOBI, I.M., DESZCZYNSKY, M., MITCHELL, J.R., & ABEYSEKERA, R. (2003): Gelatin vs polysaccharide in mixture with sugar. Biomacromolecules, 4, 11421149.

    • Search Google Scholar
    • Export Citation
  • LAMBERTNÉ-MERETEI, A. (2012): Módszer kenyérbélzet állományjellemzoinek meghatározására. Doktori értekezés. (Method for determination of textural properties of bread crumb. PhD dissertation); BCE ÉTK, Budapest, p. 34.

    • Search Google Scholar
    • Export Citation
  • MAINARDI, F. & SPADA, G. (2011): Creep, relaxation and viscosity properties for basic fractional models in rheology. Eur. Phys. J.-Spec. Top., 193(1), 133160.

    • Search Google Scholar
    • Export Citation
  • MARUDOVA-ZSIVANOVITS, M.G., ZSIVANOVITS, G., POPCHEV, I.G. & PETROVSKA, I.P. (2010): Preparation and evaluation of carrageenan/chitosan multilayer beads. -in: HELLENIC PHYSICAL SOCIETY WITH THE COOPERATION OF THE PHYSICS DEPARTMENTS OF GREEK UNIVERSITIES (Eds): 7th International Conference of the Balkan Physical Union, 1203 (1), pp. 783788. AIP Publishing.

    • Search Google Scholar
    • Export Citation
  • MIOCHE, L. & PEYRON, M.A. (1995): Bite force displayed during assessment of hardness in various texture contexts. Arch. Oral Biol., 40(5), 415423.

    • Search Google Scholar
    • Export Citation
  • MITCHELL, J.R. (1980): The rheology of gels – Review paper. J. Texture Stud., 11(4), 315337.

  • MOHOS, F.Á. (1993): Szakágazati édesipar II. (Sectorial confectionery industry II.). Mezogazdasági Szaktudás Kiadó, Budapest, pp. 127135.

    • Search Google Scholar
    • Export Citation
  • MOHOS, F.Á. (2010): Confectionery and chocolate engineering (1st ed.); Wiley & Blackwell, pp. l, 135–141, 416422.

  • SEGTNAN, V.H. & ISAKSSON, T. (2004): Temperature, sample and time dependent structural characteristics of gelatin gels studied by near infrared spectroscopy. Food Hydrocolloids, 18(1), 111.

    • Search Google Scholar
    • Export Citation
  • SCHIESSEL, H., METZLER, R., BLUMEN, A., & NONNENMACHER, T.F. (1995): Generalized viscoelastic models: their fractional equations with solutions. J. Phys. A-Math. Gen., 28(23), 65676584.

    • Search Google Scholar
    • Export Citation
  • SITKEI, GY. (1981): A mezogazdasági anyagok mechanikája. (Mechanics of agricultural materials). Akadémiai Kiadó, Budapest, pp. 108132.

    • Search Google Scholar
    • Export Citation
  • STEFFE, J.F. (1996): Rheological methods in food engineering (2nd ed.), Freeman Press, East Lansing, MI, USA, pp. 69–75, 304310.

  • TÓTH, S. (2000): Reológia, reometria (Rheology, rheometry). Veszprémi Egyetemi Kiadó, Veszprém, Hungary, pp. 91119.

  • VOZÁRY, E., KRISÁN, Á.O. & CSIMA, GY. (2011): Rheological properties of gummy confections. -in: BOŽIKOVÁ, M., HLAVÁCOVÁ, Z. HLAVÁC, P. & ADAMOVSKÝ, F. (Eds): PRAE 2011 Physics -Research -Applications -Education: Proceedings of Scientific Works. pp. 150154.

    • Search Google Scholar
    • Export Citation
  • YILMAZ, M.T., KARAMAN, S., DOGAN, M., YETIM, H. & KAYACIER, A. (2012): Characterization of O/W model system meat emulsions using shear creep and creep recovery tests based on mechanical simulation models and their correlation with texture profile analysis (TPA) parameters. J. Food Eng., 108(2), 327336.

    • Search Google Scholar
    • Export Citation
  • ZSIVANOVITS, G. & MARUDOVA-ZSIVANOVITS, M.G. (2009): Rheological properties of pectin-polycation crosslinked films. J. Optoelectron. Adv. M., 11(10), 1416.

    • Search Google Scholar
    • Export Citation
  • ZSIVÁNOVITS, G., MACDOUGALL, A.J., SMITH, A.C. & RING, S.G. (2004): Material properties of concentrated pectin networks. Carbohyd. Res., 3339(7), 13171322.

    • Search Google Scholar
    • Export Citation

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Oct 2020 0 0 0
Nov 2020 1 3 0
Dec 2020 13 0 0
Jan 2021 1 0 0
Feb 2021 0 0 0
Mar 2021 6 0 0
Apr 2021 0 0 0