View More View Less
  • a National Agricultural Research and Innovation Centre, H-1022 Budapest, Herman Ottó út 15, Hungary
  • | b Biological Research Centre of the Hungarian Academy of Sciences, H-6726 Szeged, Temesvári krt. 62, Hungary
  • | c SeqOmics Biotechnology Ltd., H-6782 Mórahalom, Vállalkozók útja 7, Hungary
  • | d National Agricultural Research and Innovation Centre, H-2100 Gödöllő, Szent-Györgyi Albert utca 4, Hungary
  • | e Szent István University, H-2100 Gödöllő, Páter Károly utca 1, Hungary
  • | f Max Planck Institute of Biochemistry, Am Klopferspitz 18., D-82152 Martinsried, Germany
Open access

Thermobifidas are thermophilic, aerobic, lignocellulose decomposing actinomycetes. The Thermobifida genus includes four species: T. fusca, T. alba, T. cellulosilytica, and T. halotolerans. T. fusca YX is the far best characterized strain of this taxon and several cellulases and hemicellulases have been cloned from it for industrial purposes targeting paper industry, biofuel, and feed applications. Unfortunately, sequence data of such enzymes are almost exclusively restricted to this single species; however, we demonstrated earlier by zymography that other T. alba and T. cellulosilytica strains encode the same enzyme sets. Recently, the advances in whole genome sequencing by the use of next generation genomics platforms accelerated the selection process of valuable hydrolases from uncharacterized bacterial species for cloning purposes. For this purpose T. cellulosilytica TB100T type strain was chosen for de novo genome sequencing. We have assembled the genome of T. cellulosilytica strain TB100T into 168 contigs and 19 scaffolds, with reference length of 4 327 869 bps, 3 589 putative coding sequences, 53 tRNAs, and 4 rRNAs. The analysis of the annotated genome revealed the existence of 27 putative hydrolases belonging to 14 different glycoside hydrolase (GH) families. The investigation of identified, cloned, and heterologously multiple cellulases, mannanases, xylanases, and amylases may result in industrial applications beside gaining useful basic research related information.

  • Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., Meyer, F., Olsen, G.J., Olson, R., Osterman, A.L., Overbeek, R.A., McNeil, L.K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G.D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. & Zagnitko, O. (2008): The RAST Server: rapid annotations using subsystems technology. BMC Genomics doi: 10.1186/1471-2164-9-75

    • Search Google Scholar
    • Export Citation
  • Barr, B.K., Hsieh, Y.L., Ganem, B. & Wilson, D.B. (1996). Identification of two functionally different classes of exocellulases. Biochemistry, 35, 586592.

    • Search Google Scholar
    • Export Citation
  • Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M. & Sonnhammer, E.L. (2002). The Pfam protein families database. Nucleic Acids Res., 30, 276280.

    • Search Google Scholar
    • Export Citation
  • Béki, E., Nagy, I., Vanderleyden, J., Jager, S., Kiss, L., Fulop, L., Hornok, L. & Kukolya, J. (2003). Cloning and heterologous expression of a beta-D-mannosidase (EC 3.2.1.25) encoding gene from Thermomonospora fusca TM51. Appl. Environ. Microb., 69, 19441952.

    • Search Google Scholar
    • Export Citation
  • Blanco, J., Coque, J.J., Velasco, J. & Martin, J.F. (1997). Cloning, expression in Streptomyces lividans and biochemical characterization of a thermostable endo-beta-1,4-xylanase of Thermomonospora alba ULJB1 with cellulose-binding ability. Appl. Microbiol. Biot., 48, 208217.

    • Search Google Scholar
    • Export Citation
  • Boetzer, M., Henkel, C.V., Jansen, H.J., Butler, D. & Pirovano, W. (2011). Scaffolding pre-assembled contigs using SSPACE. Bioinformatics, 27, 578579.

    • Search Google Scholar
    • Export Citation
  • Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V. & Henrissat, B. (2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res., 37, D233D238.

    • Search Google Scholar
    • Export Citation
  • Chevreux, B., Wetter, T. & Suhai, S. (1999). Genome sequence assembly using trace signals and additional sequence information. Computer Science and Biology: Proceedings of the German Conference on Bioinformatics, 99, 4556.

    • Search Google Scholar
    • Export Citation
  • Dhawan, S. & Kaur, J. (2007). Microbial mannanases: an overview of production and applications. Crit. Rev. Biotechnol., 27, 197216.

  • Fekete, C.A. & Kißs, L. (2013). A new approach in the active site investigation of an inverting ß-D-xylosidase from Thermobifida fusca TM51. Protein J., 32, 97105. doi: 10.1007/s10930-013-9463-8.

    • Search Google Scholar
    • Export Citation
  • Ghangas, G.S. & Wilson, D.B. (1988). Cloning of the Thermomonospora fusca endoglucanase E2 gene in Streptomyces lividans: Affinity purification and functional domains of the cloned gene product. Appl. Environ. Microbiol., 54, 25212526.

    • Search Google Scholar
    • Export Citation
  • Ghangas, G.S., Hu, Y.J. & Wilson, D.B. (1989). Cloning of a Thermomonospora fusca xylanase gene and its expression in Escherichia coli and Streptomyces lividans. J. Bacteriol., 171, 29632969.

    • Search Google Scholar
    • Export Citation
  • Herrero, E., Ribitsch, D., Dellacher, A., Zitzenbacher, S., Marold, A., Steinkellner, G., Gruber, K., Schwab, H. & Guebitz, G.M. (2013). Surface engineering of a cutinase from Thermobifida cellulosilytica for improved polyester hydrolysis. Biotechnol. Bioeng., 110, 25812590.

    • Search Google Scholar
    • Export Citation
  • Hilge, M., Gloor, S., Winterhalter, K., Zimmermann, W. & Piontek, K. (1996). Crystallization and preliminary crystallographic analysis of two beta-mannanase isoforms from Thermomonospora fusca KW3. Acta Crystallogr. D., 52, 12241225.

    • Search Google Scholar
    • Export Citation
  • Irwin, D.C., Jung, E.D. & Wilson, D.B. (1994). Characterization and sequence of a Thermomonospora fusca xylanase. Appl. Environ. Microb., 60, 763770.

    • Search Google Scholar
    • Export Citation
  • Irwin, D.C., Shin, D.H., Zhang, S., Barr, B.K., Sakon, J., Karplus, P.A. & Wilson, D.B. (1998). Roles of the catalytic domain and two cellulose binding domains of Thermomonospora fusca E4 in cellulose hydrolysis. J. Bacteriol., 180, 17091714.

    • Search Google Scholar
    • Export Citation
  • Irwin, D.C., Cheng, M., Xiang, B., Rose, J.K. & Wilson, D.B. (2003). Cloning, expression and characterization of a family-74 xyloglucanase from Thermobifida fusca. Eur. J. Biochem., 270, 30833091.

    • Search Google Scholar
    • Export Citation
  • Irwin, D.C., Spezio, M., Walker, L.P. & Wilson, D.B. (1993). Activity studies of eight purified cellulases: Specificity, synergism, and binding domain effects. Biotechnol. Bioeng., 42, 10021013.

    • Search Google Scholar
    • Export Citation
  • Irwin, D.C., Zhang, S. & Wilson, D.B. (2000). Cloning, expression and characterization of a family 48 exocellulase, Cel48A, from Thermobifida fusca. Eur. J. Biochem., 267, 49884997.

    • Search Google Scholar
    • Export Citation
  • Jung, E.D., Lao, G., Irwin, D., Barr, B.K., Benjamin, A. & Wilson, D.B. (1993). DNA sequences and expression in Streptomyces lividans of an exoglucanase gene and an endoglucanase gene from Thermomonospora fusca. Appl. Environ. Microb., 59, 30323043.

    • Search Google Scholar
    • Export Citation
  • Kim, J.H., Irwin, D. & Wilson, D.B. (2004). Purification and characterization of Thermobifida fusca xylanase 10B. Can. J. Microbiol., 50, 835843.

    • Search Google Scholar
    • Export Citation
  • Kukolya, J., Dobolyi, C. & Hornok, L. (1997). Isolation and identification of thermophilic cellulolytic actinomycetes. Acta Phytopathol. Hun., 32, 97107.

    • Search Google Scholar
    • Export Citation
  • Kukolya, J., Nagy, I., Láday, M., Tóth, E., Oravecz, O., Márialigeti, K. & Hornok, L. (2002). Thermobifida cellulolytica sp. nov., a novel lignocellulose-decomposing actinomycete. Int. J. Syst. Evol. Micr., 52, 11931199.

    • Search Google Scholar
    • Export Citation
  • Kumagai, Y., Kawakami, K., Mukaihara, T., Kimura, M. & Hatanaka, T. (2012). The structural analysis and the role of calcium binding site for thermal stability in mannanase. Biochimie, 94, 27832790. doi: 10.1016/j.biochi.2012.09.012. Epub 2012 Sep 23.

    • Search Google Scholar
    • Export Citation
  • Kumagai, Y., Usuki, H., Yamamoto, Y., Yamasato, A., Arima, J., Mukaihara, T. & Hatanaka, T. (2011). Characterization of calcium ion sensitive region for ß-mannanase from Streptomyces thermolilacinus. Biochim. Biophys. Acta, 1814, 11271133. doi: 10.1016/j.bbapap.2011.04.017. Epub 2011 May 12.

    • Search Google Scholar
    • Export Citation
  • Lao, G., Ghangas, G.S., Jung, E.D. & Wilson, D.B. (1991). DNA sequences of three beta-1,4-endoglucanase genes from Thermomonospora fusca. J. Bacteriol., 173, 33973407.

    • Search Google Scholar
    • Export Citation
  • Lykidis, A., Mavromatis, K., Ivanova, N., Anderson, I., Land, M., Dibartolo, G., Martinez, M., Lapidus, A., Lucas, S., Copeland, A., Richardson, P., Wilson, D.B. & Kyrpides, N. (2007). Genome sequence and analysis of the soil cellulolytic actinomycete Thermobifida fusca YX. J. Bacteriol., 189, 24772486.

    • Search Google Scholar
    • Export Citation
  • Madden, T.L., Tatusov, R.L. & Zhang, J. (1996). Applications of network BLAST server. Methods Enzymol., 266, 131141.

  • Mitchell, A., Chang, H.Y., Daugherty, L., Fraser, M., Hunter, S., Lopez, R., Mcanulla, C., Mcmenamin, C., Nuka, G., Pesseat, S., Sangrador-Vegas, A., Scheremetjew, M., Rato, C., Yong, S.Y., Bateman, A., Punta, M., Attwood, T.K., Sigrist, C.J., Redaschi, N., Rivoire, C., Xenarios, I., Kahn, D., Guyot, D., Bork, P., Letunic, I., Gough, J., Oates, M., Haft, D., Huang, H., Natale, D.A., Wu, C.H., Orengo, C., Sillitoe, I., Mi, H., Thomas, P.D. & Finn, R.D. (2015): The InterPro protein families database: the classification resource after 15 years. Nucleic Acids Res., 43, D213D221.

    • Search Google Scholar
    • Export Citation
  • Moraïs, S., Barak, Y., Hadar, Y., Wilson, D.B., Shoham, Y., Lamed, R. & Bayer, E.A. (2011). Assembly of xylanases into designer cellulosomes promotes efficient hydrolysis of the xylan component of a natural recalcitrant cellulosic substrate. MBio., 2, 233211. doi: 10.1128/mBio.00233-11. Print 2011.

    • Search Google Scholar
    • Export Citation
  • Moraïs, S., Salama-Alber, O., Barak, Y., Hadar, Y., Wilson, D.B., Lamed, R., Shoham, Y. & Bayer, E.A. (2012). Functional aßsociation of catalytic and ancillary modules dictates enzymatic activity in glycoside hydrolase family 43 ß-xylosidase. J. Biol. Chem., 287, 92139221. doi: 10.1074/jbc.M111.314286. Epub 2012 Jan 23.

    • Search Google Scholar
    • Export Citation
  • O’Farrell, P.H. (1975). High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem., 250, 40074021.

  • Posta, K., Béki, E., Wilson, D.B., Kukolya, J. & Hornok, L. (2004). Cloning, characterization and phylogenetic relationships of cel5B, a new endoglucanase encoding gene from Thermobifida fusca. J. Basic Microb., 44, 383399.

    • Search Google Scholar
    • Export Citation
  • Reddy, T.B.K., Thomas, A.D., Stamatis, D., Bertsch, J., Isbandi, M., Jansson, J., Mallajosyula, J., Pagani, I., Lobos, E.A. & Kyrpides, N.C. (2015). The Genomes OnLine Database (GOLD) v.5: a metadata management system based on a four level (meta)genome project classification. Nucleid Acids Res., 43, 10991106.

    • Search Google Scholar
    • Export Citation
  • Sakon, J., Irwin, D., Wilson, D.B. & Karplus, P.A. (1997). Structure and mechanism of endo/exocellulase E4 from Thermomonospora fusca. Nat. Struct. Biol., 4, 810818.

    • Search Google Scholar
    • Export Citation
  • Spezio, M., Wilson, D.B. & Karplus, P.A. (1993). Crystal structure of the catalytic domain of a thermophilic endocellulase. Biochemistry, 32, 99069916.

    • Search Google Scholar
    • Export Citation
  • Spiridonov, N.A. & Wilson, D.B. (2001). Cloning and biochemical characterization of BglC, a beta-glucosidase from the cellulolytic actinomycete Thermobifida fusca. Curr Microbiol., 42, 295301.

    • Search Google Scholar
    • Export Citation
  • Taylor, J.S., Teo, B., Wilson, D.B. & Brady, J.W. (1995). Conformational modeling of substrate binding to endocellulase E2 from Thermomonospora fusca. Protein Eng., 8, 11451152.

    • Search Google Scholar
    • Export Citation
  • Tóth, Á., Barna, T., Nagy, I., Horváth, B., Táncsics, A., Kriszt, B., Baka, E., Fekete, CS. & Kukolya, J. (2013). Draft genome sequence of the lignocellulose decomposer Thermobifida fusca strain TM51. Genome announcements, 1(4), e00482-13.

    • Search Google Scholar
    • Export Citation
  • Walter, S., Wellmann, E. & Schrempf, H. (1998). The cell wall-anchored Streptomyces reticuli avicel-binding protein (AbpS) and its gene. J. Bacteriol., 180, 16471654.

    • Search Google Scholar
    • Export Citation
  • Wei, Y.T., Zhu, Q.X., Luo, Z.F., Lu, F.S., Chen, F.Z., Wang, Q.Y., Huang, K., Meng, J.Z., Wang, R. & Huang, R.B. (2004). Cloning, expression and identification of a new trehalose synthase gene from Thermobifida fusca genome. Acta Biochim. Biophys. Sin. (Shanghai), 36, 477484.

    • Search Google Scholar
    • Export Citation
  • Wilson, D.B. (2004). Studies of Thermobifida fusca plant cell wall degrading enzymes. Chem. Rec., 4, 7282.

  • Yang, C.H., Yang, S.F. & Liu, W.H. (2007). Production of xylooligosaccharides from xylans by extracellular xylanases from Thermobifida fusca. J. Agr. Food Chem., 55, 39553959.

    • Search Google Scholar
    • Export Citation
  • Yang, C.H. & Liu, W.H. (2007). Cloning and characterization of a maltotriose-producing alpha-amylase gene from Thermobifida fusca. J. Ind. Microbiol. Biot., 34, 325330.

    • Search Google Scholar
    • Export Citation
  • Yang, L.L., Tang, S.K., Zhang, Y.Q., Zhi, X.Y., Wang, D., Xu, L.H. & Li, W.J. (2008). Thermobifida halotolerans sp. nov., isolated from a salt mine sample, and emended description of the genus Thermobifida. Int. J. Syst. Evol. Microb., 58, 18211825.

    • Search Google Scholar
    • Export Citation
  • Zhang, S. & Wilson, D.B. (1997). Surface residue mutations which change the substrate specificity of Thermomonospora fusca endoglucanase E2. J. Biotechnol., 57, 101113.

    • Search Google Scholar
    • Export Citation
  • Zhang, S., Lao, G. & Wilson, D.B. (1995). Characterization of a Thermomonospora fusca exocellulase. Biochemistry, 34, 33863395.

  • Zhang, Z., Wang, Y. & Ruan, J. (1998). Reclassification of Thermomonospora and Microtetraspora. Int. J. Syst. Bacteriol., 48, 411422.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 1 0
Jul 2021 0 11 7
Aug 2021 0 3 7
Sep 2021 0 9 2
Oct 2021 0 8 2
Nov 2021 0 5 0
Dec 2021 0 2 1