View More View Less
  • 1 Brno University of Technology, Purkynova 118, CZ-61200 Brno, Czech Republic
Open access

In this essay work, the ability of probiotic biofilm formation on carrier surface was demonstrated. Probiotic biofilms exhibit the same properties as pathogen microbial biofilms but with higher resistance to low pH values and bile salts. The ability of different probiotic strains (Lactobacillus acidophilus, Bifidobacterium breve, Bifidobacterium longum) to interact with pre-selected carriers divided into 3 categories (polymers, complex food matrices, and inorganic compounds) was tested. Lactobacillus acidophilus and Bifidobacterium longum combined with inorganic silica carrier exhibited the interaction leading to biofilm formation only. Prepared biofilm (Lactobacillus acidophilus) was then subjected to comparative study with planktonic bacterial culture. The ability to survive in the presence of low pH value (pH 1–3) and bile salts (0.3% solution) was evaluated. Low pH value (pH 1) had a harsh effect on free cell culture causing decreased cell viability (71.9±3.2% of viable cells). Biofilm culture exhibited higher resistance to low pH value, the viability exceeded 90%. The exposure of free cell probiotic culture to porcine bile resulted in an almost constant decrease in viability during the study period (68.2±1.1% of viable cells, after 240 min incubation). Viability of biofilm after the exposition to bile was almost constant with a slight decrease of no more than 5% during the study.

  • Aoudia, N., Rieu, A., Briandet, R., Deschamps, J., Chluba, J., Jego, G. & Guzzo, J. (2016): Biofilms of Lactobacillus plantarum and Lactobacillus fermentum: Effect on stress responses, antagonistic effects on pathogen growth and immunomodulatory properties. Food Microbiol., 53, 5159.

    • Search Google Scholar
    • Export Citation
  • Caggianiello, G., Kleerebezem, M. & Spano, G. (2016): Exopolysaccharides produced by lactic acid bacteria: from health-promoting benefits to stress tolerance mechanisms. Appl. Microbiol. Biot., 100, 38773888.

    • Search Google Scholar
    • Export Citation
  • Cheow, W.S. & Hadinoto, K. (2013): Biofilm-like Lactobacillus rhamnosus probiotics encapsulated in alginate and carrageenan microcapsules exhibiting enhanced thermotolerance and freeze-drying resistance. Biomacromolecules, 14, 32143222.

    • Search Google Scholar
    • Export Citation
  • Cheow, W.S., Kiew, T.Y. & Hadinoto, K. (2014): Controlled release of Lactobacillus rhamnosus biofilm probiotics from alginate-locust bean gum microcapsules. Carbohyd. polym., 103, 587595.

    • Search Google Scholar
    • Export Citation
  • Corcoran, B.M., Stanton, C., Fitzgerald, G.F. & Ross, R.P. (2005): Survival of probiotic lactobacilli in acidic environments is enhanced in the presence of metabolizable sugars. Appl. Environ. Microb., 71, 30603067.

    • Search Google Scholar
    • Export Citation
  • Doleyres, Y. & Lacroix, C. (2005): Technologies with free and immobilised cells for probiotic bifidobacteria production and protection. Int. Dairy J., 15, 973988.

    • Search Google Scholar
    • Export Citation
  • Donot, F., Fontana, A., Baccou, J.C. & Schorr-Galindo, S. (2012): Microbial exopolysaccharides: Main examples of synthesis, excretion, genetics and extraction. Carbohyd. Polym., 87, 951962.

    • Search Google Scholar
    • Export Citation
  • Dunne, W.M. (2002): Bacterial adhesion: Seen any good biofilms lately? Clin. Microbiol. Rev., 15, 155166.

  • Fijałkowski, K., Peitler, D., Rakoczy, R. & Żywicka, A. (2016): Survival of probiotic lactic acid bacteria immobilized in different forms of bacterial cellulose in simulated gastric juices and bile salt solution. LWT — Food Sci. Technol., 68, 322328.

    • Search Google Scholar
    • Export Citation
  • FAO/WHO (2001): Report of a Joint FAO/WHO Expert Consultation on evaluation of health and nutrition properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba, Argentina. 30 pages.

    • Search Google Scholar
    • Export Citation
  • Gebara, C., Chaves, K.S., Ribeiro, M.C.E., Souza, F.N., Grosso, C.R. & Gigante, M.L. (2013): Viability of Lactobacillus acidophilus La5 in pectin–whey protein microparticles during exposure to simulated gastrointestinal conditions. Food Res. Int., 51, 872878.

    • Search Google Scholar
    • Export Citation
  • Hedges, A.J. (2002): Estimating the precision of serial dilutions and viable bacterial counts. Int. J. Food Microbiol., 76, 207214.

  • Li, G. (2012): Intestinal probiotics: Interactions with bile salts and reduction of cholesterol. Procedia Environ. Sci., 12, 11801186.

    • Search Google Scholar
    • Export Citation
  • Longo, F., Vuotto, C. & Donelli, G. (2014): Biofilm formation in Acinetobacter baumannii. New Microbiol, 37, 119127.

  • Miles, A.A. (1979): Citation classic — estimation of the bactericidal power of the blood. CC/Life Sci., L12L12.

  • Panicker, A.S. & Behre, P.V. (2014): Evaluation of bile tolerance in dairy and human origin Lactobacillus fermentum strains. Indian J. Dairy Sci., 67, 421425.

    • Search Google Scholar
    • Export Citation
  • Römling, U., Kjelleberg, S., Normark, S., Nyman, L., Uhlin, B.E. & Åkerlund, B. (2014): Microbial biofilm formation: A need to act. J. Intern. Med., 276, 98110.

    • Search Google Scholar
    • Export Citation
  • Ruas-Madiedo, P. & De Los Reyes-Gavilan, C.G. (2005): Invited review: Methods for the screening, isolation, and characterization of exopolysaccharides produced by lactic acid bacteria. J. Dairy Sci., 88, 843856.

    • Search Google Scholar
    • Export Citation
  • Ruiz, L., Margolles, A. & Sanchez, B. (2013): Bile resistance mechanisms in Lactobacillus and Bifidobacterium. Front. Microbiol., 4, 396.

    • Search Google Scholar
    • Export Citation
  • Salazar, N., Gueimonde, M., Reyes-Gavilán, C.G. & Ruas-Madiedo, P. (2016): Exopolysaccharides produced by lactic acid bacteria and bifidobacteria as fermentable substrates by the internal microbiota. Food Sci. Nutr., 56, 14401453.

    • Search Google Scholar
    • Export Citation
  • Srey, S., Jahid, I.K. & Ha, S.D. (2013): Biofilm formation in food industries: A food safety concern. Food Control, 31, 572585.

  • Tripathi, M.K. & Giri, S.K. (2014): Probiotic functional foods: Survival of probiotics during processing and storage. J. Funct. Foods, 9, 225241.

    • Search Google Scholar
    • Export Citation
  • Tulumoglu, S., Yuksekdag, Z.N., Beyatli, Y., Simsek, O., Cinar, B. & Yaşar, E. (2013): Probiotic properties of lactobacilli species isolated from children’s faeces. Anaerobe, 24, 3642.

    • Search Google Scholar
    • Export Citation
  • Ventolini, G. (2015): Vaginal Lactobacillus: biofilm formation in vivo — clinical implications. Int. J. Womens Health, 7, 243247.

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 10 11
Sep 2021 0 10 13
Oct 2021 0 12 8
Nov 2021 0 5 5
Dec 2021 0 7 7
Jan 2022 0 8 6
Feb 2022 0 0 0