View More View Less
  • a University of Debrecen, H-4032 Debrecen, Egyetem tér 1, Hungary
  • | b University of Debrecen, H-4032 Debrecen, Böszörményi út 138, Hungary
Open access

The aim of the study was to investigate changes of photosynthetic efficiency, amount of photosynthetic pigments, superoxide dismutase (SOD) enzyme activity, and rate of lipid peroxidation in bean-rust interaction. The clarification of the role of the above changes involved in the defence mechanism can significantly contribute to the breeding of plant varieties with natural resistance. Consequently, the amount of chemicals used in food production can be significantly reduced. In the present study some principal physiological parameters, such as the relative chlorophyll content of the host plant, the amount of photosynthetic pigments, changes in photosynthetic efficiency, and the activity of superoxide-dismutase (SOD) in addition to rate of lipid peroxidation (LP) were measured. The experiment was conducted in a humidity tent. Significant decrease in the relative chlorophyll content and in the amount of photosynthetic pigments was measured. At both sampling times, an increase was found in superoxide-dismutase enzyme activity and in rate of lipid peroxidation due to the bean rust infection. Notably, in several cases the differences were significant. The results indicate that the above parameters have important role in the bean-rust interaction, which should be taken into consideration in resistance breeding.

  • Agrios, G.N. (2005): Plant pathology, 5th ed. Academic Press, San Diego, California, 952 pages.

  • Apostol, I., Heinstein, P.F. & Low, P.S. (1989): Rapid stimulation of an oxidative burst during elicitation of cultured plant cell. Plant Physiol., 90, 109116.

    • Search Google Scholar
    • Export Citation
  • Barna, B., Fodor, J., Harrach, B.D., Pogány, M. & Király, Z. (2012): The Janus facet of reactive oxygen species in resistance and susceptibility of plants to necrotrophic and biotrophic pathogens. Plant Physiol. Bioch., 59, 3743.

    • Search Google Scholar
    • Export Citation
  • Beyer, W.F. & Fridovich, I. (1987): Assaying for superoxide dismutase activity: some large consequences of minor changes in conditions. Anal. Biochem., 161, 559566.

    • Search Google Scholar
    • Export Citation
  • Broughton, W.J., Hernandez, G., Blair, M., Beebe, S., Gepts, P. & Vanderleyden, J. (2003): Beans (Phaseolus spp.) — model food legumes. Plant Soil, 252, 55128.

    • Search Google Scholar
    • Export Citation
  • Chen, Y.E., Cui, J.M., Su, Y.Q., Yuan, S., Yuan, M. & Zhang, H.Y. (2015): Influence of stripe rust infection on the photosynthetic characteristics and antioxidant system of susceptible and resistant wheat cultivars at the adult plant stage. Front. Plant Sci., 6, 779.

    • Search Google Scholar
    • Export Citation
  • Foyer, C.H. & Noctor, G. (2003): Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol. Plantarum, 119, 355364.

    • Search Google Scholar
    • Export Citation
  • Georgiou, C.D. (1997): Lipid peroxidation in Sclerotium rolfsii: A new look into the mechanisms of sclerotial biogenesis in fungi. Mycol. Res., 101(4), 460464.

    • Search Google Scholar
    • Export Citation
  • Giannopolitis, C.H. & Ries, S.K. (1977): Superoxide dismutase. I. Occurrence in higher plant. Plant Physiol., 59, 309314.

  • Hall, D.O. & Rao, K.K. (1994): Photosynthesis. Cambridge University Press, Cambridge, 211 pages.

  • Heath, R.L. & Packer, L. (1968): Photoperoxidation in isolated chloroplasts. I. Kinetics and stoichiometry of fatty acid peroxidation. Arch. Biochem. Biophys., 125, 189198.

    • Search Google Scholar
    • Export Citation
  • Lichtenthaler, H.K. (1996): Vegetation stress: An introduction to the stress concept in plants. J. Plant Physiol., 148(12), 414.

  • Livne, A. (1964): Photosynthesis in healthy and rust-affected plants. Plant Physiol., 39, 614621.

  • McMillan, M.S., Schwartz, H.M. & Otto, K.I. (2003): Sexual stage development of Uromyces appendiculatus and its potential use for disease resistance screening in Phaseolus vulgaris. Plant Dis., 87, 11331138.

    • Search Google Scholar
    • Export Citation
  • Mersha, Z. & Hau, B. (2011): Reciprocal effects of host and disease dynamics in the bean rust pathosystem, J. Plant Dis. Protect., 118(2), 5462.

    • Search Google Scholar
    • Export Citation
  • Mmbaga, M.T., Steadman, J.R. & Stavely, J.R. (1996): The use of host resistance in disease management of rust in common bean. Integrated Pest Management Reviews, 1, 191200.

    • Search Google Scholar
    • Export Citation
  • Moll, S., Serrano, P. & Boyle, C. (1995): In vivo chlorophyll fluorescence in rust-infected bean plants. Angew. Bot., 69, 163168.

  • Moran, R. & Porath, D. (1980): Chlorophyll determination in intact tissues using N,N-dimethylformamide. Plant Physiol., 65, 478479.

  • Scheiber, U., Kühl, M., Kliment, I. & Reising, H. (1996): Measurement of chlorophyll fluorescence within leaves using a modified PAM fluorometer with a fiber-optic microprobe. Phytosynth. Res., 47, 103109.

    • Search Google Scholar
    • Export Citation
  • Shetty, N.P., Jorgensen, H.J.L., Jensen, J.D., Collinge, D.B. & Shetty, H.S. (2008): Roles of reactive oxygen species in interactions between plants and pathogens. Eur. J. Plant Pathol., 121, 267280.

    • Search Google Scholar
    • Export Citation
  • Scholes, J.D. (1992): Plant responses to foliar attach. Photosynthesis: Cellular and tissue aspects in diseased leaves -in: Ayres, P.G. (Ed.), Plant and pathogens. BIOS Scientific Publisher, Oxford, UK, pp. 85105.

    • Search Google Scholar
    • Export Citation
  • Stavely, J.R. & Pastor-Corrales, M.A. (1989): Rust. -in: Schwartz, H.F. & Pastor-Corrales, M.A. (Eds), Bean production problems in the tropics (2nd ed.), Centro Internacional de Agricultura Tropical Press, Cali, pp. 159194.

    • Search Google Scholar
    • Export Citation
  • Suzuki, N. & Mittler, R. (2006): Reactive oxygen species and temperature stresses: A delicate balance between signaling and destruction. Physiol. Plant, 126, 4551.

    • Search Google Scholar
    • Export Citation
  • Uddling, J., Gelang-Alfredsson, J., Piikki, K. & Pleijel, H. (2007): Evaluating the relationship between leaf chlorophyll concentration and Spad-502 chlorophyll meter readings. Photosynth. Res., 91(1), 3746.

    • Search Google Scholar
    • Export Citation
  • Wellburn, A.R. (1994): The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J. Plant Physiol., 144(3), 307313.

    • Search Google Scholar
    • Export Citation

 

The author instruction is available in PDF.
Please, download the file from HERE.

Senior editors

Editor(s)-in-Chief: András Salgó

Co-ordinating Editor(s) Marianna Tóth-Markus

Co-editor(s): A. Halász

       Editorial Board

  • L. Abrankó (Szent István University, Gödöllő, Hungary)
  • D. Bánáti (University of Szeged, Szeged, Hungary)
  • J. Baranyi (Institute of Food Research, Norwich, UK)
  • I. Bata-Vidács (Agro-Environmental Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • J. Beczner (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • F. Békés (FBFD PTY LTD, Sydney, NSW Australia)
  • Gy. Biró (National Institute for Food and Nutrition Science, Budapest, Hungary)
  • A. Blázovics (Semmelweis University, Budapest, Hungary)
  • F. Capozzi (University of Bologna, Bologna, Italy)
  • M. Carcea (Research Centre for Food and Nutrition, Council for Agricultural Research and Economics Rome, Italy)
  • Zs. Cserhalmi (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • M. Dalla Rosa (University of Bologna, Bologna, Italy)
  • I. Dalmadi (Szent István University, Budapest, Hungary)
  • K. Demnerova (University of Chemistry and Technology, Prague, Czech Republic)
  • M. Dobozi King (Texas A&M University, Texas, USA)
  • Muying Du (Southwest University in Chongqing, Chongqing, China)
  • S. N. El (Ege University, Izmir, Turkey)
  • S. B. Engelsen (University of Copenhagen, Copenhagen, Denmark)
  • E. Gelencsér (Food Science Research Institute, National Agricultural Research and Innovation Centre, Budapest, Hungary)
  • V. M. Gómez-López (Universidad Católica San Antonio de Murcia, Murcia, Spain)
  • J. Hardi (University of Osijek, Osijek, Croatia)
  • K. Héberger (Research Centre for Natural Sciences, ELKH, Budapest, Hungary)
  • N. Ilić (University of Novi Sad, Novi Sad, Serbia)
  • D. Knorr (Technische Universität Berlin, Berlin, Germany)
  • H. Köksel (Hacettepe University, Ankara, Turkey)
  • K. Liburdi (Tuscia University, Viterbo, Italy)
  • M. Lindhauer (Max Rubner Institute, Detmold, Germany)
  • M.-T. Liong (Universiti Sains Malaysia, Penang, Malaysia)
  • M. Manley (Stellenbosch University, Stellenbosch, South Africa)
  • M. Mézes (Szent István University, Gödöllő, Hungary)
  • Á. Németh (Budapest University of Technology and Economics, Budapest, Hungary)
  • P. Ng (Michigan State University,  Michigan, USA)
  • Q. D. Nguyen (Szent István University, Budapest, Hungary)
  • L. Nyström (ETH Zürich, Switzerland)
  • L. Perez (University of Cordoba, Cordoba, Spain)
  • V. Piironen (University of Helsinki, Finland)
  • A. Pino (University of Catania, Catania, Italy)
  • M. Rychtera (University of Chemistry and Technology, Prague, Czech Republic)
  • K. Scherf (Technical University, Munich, Germany)
  • R. Schönlechner (University of Natural Resources and Life Sciences, Vienna, Austria)
  • A. Sharma (Department of Atomic Energy, Delhi, India)
  • A. Szarka (Budapest University of Technology and Economics, Budapest, Hungary)
  • M. Szeitzné Szabó (National Food Chain Safety Office, Budapest, Hungary)
  • S. Tömösközi (Budapest University of Technology and Economics, Budapest, Hungary)
  • L. Varga (University of West Hungary, Mosonmagyaróvár, Hungary)
  • R. Venskutonis (Kaunas University of Technology, Kaunas, Lithuania)
  • B. Wróblewska (Institute of Animal Reproduction and Food Research, Polish Academy of Sciences Olsztyn, Poland)

 

Acta Alimentaria
E-mail: Acta.Alimentaria@uni-mate.hu

Indexing and Abstracting Services:

  • Biological Abstracts
  • BIOSIS Previews
  • CAB Abstracts
  • Chemical Abstracts
  • Current Contents: Agriculture, Biology and Environmental Sciences
  • Elsevier Science Navigator
  • Essential Science Indicators
  • Global Health
  • Index Veterinarius
  • Science Citation Index
  • Science Citation Index Expanded (SciSearch)
  • SCOPUS
  • The ISI Alerting Services

 

2020
 
Total Cites
768
WoS
Journal
Impact Factor
0,650
Rank by
Nutrition & Dietetics 79/89 (Q4)
Impact Factor
Food Science & Technology 130/144 (Q4)
Impact Factor
0,575
without
Journal Self Cites
5 Year
0,899
Impact Factor
Journal
0,17
Citation Indicator
 
Rank by Journal
Nutrition & Dietetics 88/103 (Q4)
Citation Indicator
Food Science & Technology 142/160 (Q4)
Citable
59
Items
Total
58
Articles
Total
1
Reviews
Scimago
28
H-index
Scimago
0,237
Journal Rank
Scimago
Food Science Q3
Quartile Score
 
Scopus
248/238=1,0
Scite Score
 
Scopus
Food Science 216/310 (Q3)
Scite Score Rank
 
Scopus
0,349
SNIP
 
Days from
100
submission
 
to acceptance
 
Days from
143
acceptance
 
to publication
 
Acceptance
16%
Rate
2019  
Total Cites
WoS
522
Impact Factor 0,458
Impact Factor
without
Journal Self Cites
0,433
5 Year
Impact Factor
0,503
Immediacy
Index
0,100
Citable
Items
60
Total
Articles
59
Total
Reviews
1
Cited
Half-Life
7,8
Citing
Half-Life
9,8
Eigenfactor
Score
0,00034
Article Influence
Score
0,077
% Articles
in
Citable Items
98,33
Normalized
Eigenfactor
0,04267
Average
IF
Percentile
7,429
Scimago
H-index
27
Scimago
Journal Rank
0,212
Scopus
Scite Score
220/247=0,9
Scopus
Scite Score Rank
Food Science 215/299 (Q3)
Scopus
SNIP
0,275
Acceptance
Rate
15%

 

Acta Alimentaria
Publication Model Hybrid
Submission Fee none
Article Processing Charge 1100 EUR/article
Printed Color Illustrations 40 EUR (or 10 000 HUF) + VAT / piece
Regional discounts on country of the funding agency World Bank Lower-middle-income economies: 50%
World Bank Low-income economies: 100%
Further Discounts Editorial Board / Advisory Board members: 50%
Corresponding authors, affiliated to an EISZ member institution subscribing to the journal package of Akadémiai Kiadó: 100%
Subscription fee 2021 Online subsscription: 736 EUR / 920 USD
Print + online subscription: 852 EUR / 1064 USD
Subscription fee 2022 Online subsscription: 754 EUR / 944 USD
Print + online subscription: 872 EUR / 1090 USD
Subscription Information Online subscribers are entitled access to all back issues published by Akadémiai Kiadó for each title for the duration of the subscription, as well as Online First content for the subscribed content.
Purchase per Title Individual articles are sold on the displayed price.

Acta Alimentaria
Language English
Size B5
Year of
Foundation
1972
Publication
Programme
2021 Volume 50
Volumes
per Year
1
Issues
per Year
4
Founder Magyar Tudományos Akadémia    
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0139-3006 (Print)
ISSN 1588-2535 (Online)

 

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 9 6
Jul 2021 0 1 2
Aug 2021 0 3 5
Sep 2021 0 9 5
Oct 2021 0 5 14
Nov 2021 0 3 7
Dec 2021 0 3 2