View More View Less
  • a Semmelweis University, H-1085 Budapest Üllői út 26, Hungary
  • | b National Agricultural Research & Innovation Centre Research Institute for Animal Breeding, Nutrition & Meat Science Herceghalom, H-2053 Herceghalom, Gesztenyés út 1, Hungary
  • | c Uzsoki Street Hospital, H-1145 Budapest, Uzsoki utca 29-41, Hungary
  • | d Szent István University, H-1118 Budapest, Ménesi út 44, Hungary
  • | f Hungarian Academy of Sciences, H-1117 Budapest, Magyar Tudósok Körutja 2, Hungary
Open access

The effect of polyphenolic bioactive substances, especially resveratrol (12.03 mg l−1), of an often consumed Hungarian red wine was investigated in a short term rat experiment. Male young Wistar albino rats were treated with high volumes of red wine (matching one bottle of wine/day for a 85 kg man) (N=5) and another alcoholic drink of the same alcohol concentration (N=5), corresponding to the circumstances of alcoholism, and 5 rats were in the control group. A total of 7 routine laboratory parameters were measured from the sera by kits.

The changes of redox homeostasis (H-donor activity, induced chemiluminescence, diene-conjugates, GSHPx) were studied in blood plasma and/or in liver homogenates by spectrophotometric and luminometric methods. Transmethylation property of the liver was measured by overpressured layer chromatography (OPLC) technique. It was proven with in vitro OPLC analytical study that resveratrol reacted with methyl groups, and resveratrol was demonstrated to influence transmethylation processes as well as redox homeostasis. Red wine compounds do not protect from the harmful effects of alcohol, and even by high doses of resveratrol, the liver further deteriorates and the negative effect of alcohol increases. It has been confirmed that high doses of resveratrol do not provide protection against liver damage in those suffering from alcoholism.

  • AOAC (1984): Official Methods of Analysis. 14th ed. Arlington, USA, Method 8054B.

  • Blázovics, A. & Sárdi, É. (2018): Methodological repertoire development to study the effect of dietary supplementation in cancer therapy. Microchem. J., 136, 121127.

    • Search Google Scholar
    • Export Citation
  • Bradamante, S., Barenghi, L. & Villa, A. (2004): Cardiovascular protective effects of resveratrol. Cardiovasc. Drug Rev., 22, 169188.

    • Search Google Scholar
    • Export Citation
  • Chachay, V.S., MacDonald, G.A., Martin, J.H., Whitehead, J.P., O'Moore-Sullivan, T.M., … & Hickman, I.J. (2014): Resveratrol does not benefit patients with non-alcoholic fatty liver disease. Clin. Gastroenterol. H., 12, 20922103.

    • Search Google Scholar
    • Export Citation
  • Chiva-Blanch, G., Urpi-Sarda, M., Ros, E., Valderas-Martinez, P., Casas, R., …. & Estruch, R. (2013): Effects of red wine polyphenols and alcohol on glucose metabolism and the lipid profile: a randomized clinical trial. Clin Nutr., 32, 200206.

    • Search Google Scholar
    • Export Citation
  • Dupont, I., Lucas, D., Clot, P. Menez, C. & Albano, E. (1998): Cytochrome P4502E1 inducibility and hydroxyethyl radical formation among alcoholics. J. Hepatol., 28, 564571.

    • Search Google Scholar
    • Export Citation
  • Hassan-Khabbar, S., Cottart, C.H., Wendum, D., Vibert, F., Clot, J.P., … & Nivet-Antoine, V. (2008): Postischemic treatment by trans-resveratrol in rat liver ischemia-reperfusion: A possible strategy in liver surgery Liver Transplant., 14, 451459.

    • Search Google Scholar
    • Export Citation
  • Hatano, T., Kagawa, H., Yasuhara, T. & Okuda, T. (1988): Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull., 36, 20902097.

    • Search Google Scholar
    • Export Citation
  • Herbert, A., Gilbert, R., Cottrell, D. & Li, L. (2017): Causes of death up to 10 years after admissions to hospitals for self-inflicted, drug-related or alcohol-related, or violent injury during adolescence: a retrospective, nationwide, cohort study. Lancet, 390 (10094), 577587.

    • Search Google Scholar
    • Export Citation
  • Lieber, C.S. (1997): Ethanol metabolism, cirrhosis, and alcoholism. Clin. Chim. Acta., 257, 5984.

  • Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951): Protein measurement with Folin phenol reagent. J. Biol. Chem., 93, 265275.

    • Search Google Scholar
    • Export Citation
  • McCubrey, A., Lertpiriyapong, K., Steelman, L.S., Abrams, S.L., Yang, L.V., … & Cervello, M. (2017): Effects of resveratrol, curcumin, berberine and other nutraceuticals on aging, cancer development, cancer stem cells and microRNAs. Aging US, 9, 14771536.

    • Search Google Scholar
    • Export Citation
  • McGill, M.R., Du, K., Weemhoff, J.L. & Jaeschke, H. (2015): Critical review of resveratrol in xenobiotic-induced hepatotoxicity. Food Chem. Toxicol., 86, 309318.

    • Search Google Scholar
    • Export Citation
  • Molnár, V., Billes, F., Tyihák, E. & Mikosch, H. (2008): Theoretical study on the vibrational spectra of methoxy- and formyl-dihydroxy-trans-stilbenes and their hydrolytic equilibria. Spectrochim. Acta A, 69, 542558.

    • Search Google Scholar
    • Export Citation
  • Moreno-Indias, I., Sánchez-Alcoholado, L., Pérez-Martínez, P., Andrés-Lacueva, C. & Cardona F. (2016): Red wine polyphenols modulate fecal microbiota and reduce markers of the metabolic syndrome in obese patients. Food Funct., 7, 17751787.

    • Search Google Scholar
    • Export Citation
  • Oh, W.Y. & Shahidi, F. (2018): Antioxidant activity of resveratrol ester derivatives in food and biological model systems. Food Chem., 261, 267273.

    • Search Google Scholar
    • Export Citation
  • Sárdi, É. & Tyihák, E. (1998): Relationship between dimedone concentration and formaldehyde captured in plant tissues. Acta Biol. Hung., 49, 291301.

    • Search Google Scholar
    • Export Citation
  • Souto, A.A., Carneiro, M.C., Seferin, M., Senna, M.J.H., Conz, A. & Gobbi, K. (2001): Determination of trans-resveratrol concentrations in Brazilian red wines by HPLC. J. Food Compos. Anal., 14, 441445.

    • Search Google Scholar
    • Export Citation
  • Szende, B., Tyihák, E. & Király-Véghely, Z. (2000): Dose-dependent effect of resveratrol on proliferation and apoptosis in endothelial and tumor cell cultures. Exp. Mol. Med., 32, 8892.

    • Search Google Scholar
    • Export Citation
  • Tyihák, E., Albert, L., Németh, Zs.I., Kátay, Gy., Király-Véghely, Z. & Szende, B. (1998): Formaldehyde cycle and the natural formaldehyde generators and capturers. Acta Biol. Hung., 49, 225238.

    • Search Google Scholar
    • Export Citation
  • Tyihák, E., Király-Véghely, Zs. & Móricz, Á.M. (2011): Multiple beneficial effects of resveratrol and their chemical basis. Nat. Prod. Commun., 6, 631638.

    • Search Google Scholar
    • Export Citation
  • Vrhovsek, U., Eder, R. & Wendelin, S. (1995): The occurrence of trans-resveratrol in Slovenian red and white wines. Acta Alimentaria, 24, 203212.

    • Search Google Scholar
    • Export Citation
  • Worrall, S., de Jersey, J., Nicholls, R. & Wilce, P.A. (1993): Acetaldehyde/protein interactions: are they involved in the pathogenesis of alcoholic liver disease? Digest. Dis., 11, 265277.

    • Search Google Scholar
    • Export Citation
  • Wu, D., Wang, X., Zhou, R., Yang, L. & Cederbaum, A.I. (2012): Alcohol steatosis and cytotoxicity: the role of cytochrome P4502E1 and autophagy, Free Radical Bio. Med., 53, 13461357.

    • Search Google Scholar
    • Export Citation
  • Xia, N., Daiber, A., Förstermann, U. & Li, H. (2017): Antioxidant effects of resveratrol in the cardiovascular system. Brit. J. Pharmacol., 174, 16331646.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 0 0 0
Full Text Views 144 128 11
PDF Downloads 92 83 7