View More View Less
  • 1 Agricultural Research Council-Small Grain Institute (ARC-SGI), Bethlehem, South Africa
  • 2 University of KwaZulu-Natal, Pietermaritzburg, South Africa
  • 3 University of South Africa, Pretoria, South Africa
Open access

Phenotypic and genotypic evaluation of wheat genetic resources and development of segregating populations are pre-requisites for identifying rust resistance genes. The objectives of this study were to assess adult plant resistance (APR) of selected wheat genotypes to leaf rust and stem rust and to develop segregating populations for resistance breeding. Eight selected Kenyan cultivars with known resistance to stem rust, together with local checks were evaluated for leaf rust and stem rust resistance at seedling stage and also across several environments. Selected diagnostic markers were used to determine the presence of known genes. All eight cultivars were crossed with local checks using a bi-parental mating design. Seedling tests revealed that parents exhibited differential infection types against wheat rust races. Cultivars Paka and Popo consistently showed resistant infection types at seedling stage, while Gem, Romany, Pasa, Fahari, Kudu, Ngiri and Kariega varied for resistant and susceptible infection types depending on the pathogen race used. The control cultivars Morocco and McNair consistently showed susceptible infection types as expected. In the field, all cultivars except for Morocco showed moderate to high levels of resistance, indicating the presence of effective resistance genes. Using diagnostic markers, presence of Lr34 was confirmed in Gem, Fahari, Kudu, Ngiri and Kariega, while Sr2 was present in Gem, Romany, Paka and Kudu. Seedling resistance gene, Sr35, was only detected in cultivar Popo. Overall, the study developed 909 F6:8 recombinant inbred lines (RILs) as part of the nested mating design and are useful genetic resources for further studies and for mapping wheat rust resistance genes.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Bajgain, P., Rouse, M.N., Tsilo, T.J., Macharia, G.K., Bhavani, S., Jin, Y., Anderson, J.A. 2016. Nested association mapping of stem rust resistance in wheat using genotyping by sequencing. PloS One 11:e0155760.

    • Search Google Scholar
    • Export Citation
  • Bansal, U., Bariana, H., Wong, D., Randhawa, M., Wicker, T., Hayden, M., Keller, B. 2014. Molecular mapping of an adult plant stem rust resistance gene Sr56 in winter wheat cultivar Arina. Theor. Appl. Genet. 127:14411448.

    • Search Google Scholar
    • Export Citation
  • Herrera-Foessel, S.A., Lagudah, E.S., Huerta-Espino, J., Hayden, M.J., Bariana, H.S., Singh, D., Singh, R.P. 2011. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor. Appl. Genet. 122:239249.

    • Search Google Scholar
    • Export Citation
  • Herrera-Foessel, S.A., Singh, R.P., Huerta-Espino, J., Rosewarne, G.M., Periyannan, S.K., Viccars, L., Calvo-Salazar, V., Lan, C., Lagudah, E.S. 2012. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor. Appl. Genet. 124:14751486.

    • Search Google Scholar
    • Export Citation
  • Herrera-Foessel, S.A., Singh, R.P., Lillemo, M., Huerta-Espino, J., Bhavani, S., Singh, S., Lan, C., Calvo-Salazar, V., Lagudah, E.S. 2014. Lr67/Yr46 confers adult plant resistance to stem rust and powdery mildew in wheat. Theor. Appl. Genet. 127:781789.

    • Search Google Scholar
    • Export Citation
  • Johnson, R. 1984. A critical analysis of durable resistance. Ann. Rev. Phytopathol. 22:309330.

  • Knott, D. 1968: The inheritance of resistance to stem rust races 56 and 15B-1L (Can.) in the wheat varieties Hope and H-44. Canad. J. Genet. Cytol. 10:311320.

    • Search Google Scholar
    • Export Citation
  • Kolmer, J. 1996. Genetics of resistance to wheat leaf rust 1. Annu. Rev. Phytopathol. 34:435455.

  • Kolmer, J.A. 2005. Tracking wheat rust on a continental scale. Curr. Opin. Plant Biol. 8:441449.

  • Kolmer, J.A., Lagudah, E.S., Lillemo, M., Lin, M., Bai, G. 2015. The Lr46 gene conditions partial adult-plant resistance to stripe rust, stem rust, and powdery mildew in Thatcher wheat. Crop Sci. 55:25572565.

    • Search Google Scholar
    • Export Citation
  • Kolmer, J., Acevedo, M. 2016. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity. Phytopathol. 106:380385.

    • Search Google Scholar
    • Export Citation
  • Krattinger, S.G., Lagudah, E.S., Spielmeyer, W., Singh, R.P., Huerta-Espino, J., McFadden, H., Bossolini, E., Selter, L.L., Keller, B. 2009. A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:13601363.

    • Search Google Scholar
    • Export Citation
  • Lagudah, E., Mcfadden, H., Singh, R., Huerta-Espino, J., Bariana, H., Spielmeyer, W. 2006. Molecular genetic characterization of the Lr34/Yr18 slow rusting resistance gene region in wheat. Theor. Appl. Genet. 114:2130.

    • Search Google Scholar
    • Export Citation
  • Lillemo, M., Asalf, B., Singh, R., Huerta-Espino, J., Chen, X., He Z., Bjørnstad, Å. 2008. The adult plant rust resistance loci Lr34/Yr18 and Lr46/Yr29 are important determinants of partial resistance to powdery mildew in bread wheat line Saar. Theor. Appl. Genet. 116:11551166.

    • Search Google Scholar
    • Export Citation
  • Long, D., Kolmer, J. 1989. A North American system of nomenclature for Puccinia recondita f. sp. tritici. Phytopathol. 79:525529.

  • Mago, R., Tabe, L., McIntosh, R.A., Pretorius, Z., Kota, R., Paux, E., Wicker, T., Breen, J., Lagudah, E.S., Ellis, J.G., Spielmeyer, W. 2011a. A multiple resistance locus on chromosome arm 3BS in wheat confers resistance to stem rust (Sr2), leaf rust (Lr27) and powdery mildew. Theor. Appl. Genet. 123:615623.

    • Search Google Scholar
    • Export Citation
  • Mago, R., Brown-Guedira, G., Dreisigacker, S., Breen, J., Jin, Y., Singh, R., Appels, R., Lagudah, E.S., Ellis, J., Spielmeyer, W. 2011b. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor. Appl. Genet. 122:735744.

    • Search Google Scholar
    • Export Citation
  • McCallum, B.D., Hiebert, C.W., Cloutier, S., Bakkeren, G., Rosa, S.B., Humphreys, D.G., Marias, G.F., McCartney, C.A., Panwar, V., Rampitsch, C., Saville, B.J., Wang, X. 2016. A review of wheat leaf rust research and the development of resistant cultivars in Canada. Can. J. Plant Pathol. 38:118.

    • Search Google Scholar
    • Export Citation
  • McIntosh, R.A., Wellings, C.R., Park, R.F. 1995. Wheat rusts: an atlas of resistance genes. CSIRO Publishing. East Melbourne, Victoria 3002, Australia.

    • Search Google Scholar
    • Export Citation
  • Njau, P., Wanyera, R., Macharia, G., Singh, J.M.R., Keller, B. 2009. Resistance in Kenyan bread wheat to recent eastern African isolate of stem rust, Puccinia graminis f. sp. tritici, Ug99. J. Plant Breed. Crop Sci. 1:022027.

    • Search Google Scholar
    • Export Citation
  • Njau, P.N., Jin, Y., Huerta-Espino, J., Keller, B., Singh, R.P. 2010. Identification and evaluation of resistance to stem rust race Ug99 in wheat. Plant Dis. 94:413419.

    • Search Google Scholar
    • Export Citation
  • Onguso, J., Njau, P. 2015. Screening of Kenyan bread wheat varieties for resistance to the emerging strains of stem rust fungi (Puccinia graminis f. sp. tritici) race Ug99. World J. Agri. Res. 3:510.

    • Search Google Scholar
    • Export Citation
  • Parlevliet, J.E., Van Ommeren, A. 1975. Parital resistance of barley to leaf rust, Puccinia hordei. II. Relationship between field trials, micro plot tests and latent period. Euphytica 24:293303.

    • Search Google Scholar
    • Export Citation
  • Peterson, R.F., Campbell, A., Hannah, A. 1948. A diagrammatic scale for estimating rust intensity on leaves and stems of cereals. Canad. J. Res. 26:496500.

    • Search Google Scholar
    • Export Citation
  • Porebski, S., Bailey, L.G., Baum, B.R. 1997. Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol. Bio. Rep. 15:815.

    • Search Google Scholar
    • Export Citation
  • Pretorius, Z., Pakendorf, K., Marais, G., Prins, R., Komen, J. 2007. Challenges for sustainable cereal rust control in South Africa. Crop Past. Sci. 58:593601.

    • Search Google Scholar
    • Export Citation
  • Pretorius, Z., Singh, R., Wagoire, W., Payne, T. 2000. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis. f. sp. tritici in Uganda. Plant Dis. 84:203.

    • Search Google Scholar
    • Export Citation
  • Pretorius, Z., Visser, B., Terefe, T., Herselman, L., Prins, R., Soko, T., Siwale, J., Mutari, B., Selinga, T.I., Hodson, D.P. 2015. Races of Puccinia triticina detected on wheat in Zimbabwe, Zambia and Malawi and regional germplasm responses. Australas. Plant Path. 44:217224.

    • Search Google Scholar
    • Export Citation
  • Prins, R., Dreisigacker, S., Pretorius, Z., Van Schalkwyk, H., Wessels, E., Smit, C., Bender, C., Singh, D., Boyd, L.A. 2016. Stem rust resistance in a geographically diverse collection of spring wheat lines collected from across Africa. Front. Plant Sci. 7:973.

    • Search Google Scholar
    • Export Citation
  • Silva, P., Calvo-Salazar, V., Condón, F., Quincke, M., Pritsch, C., Gutiérrez, L., Castro, A., Herrera-Foessel, S., von Zitzewitz, J., Germán, S. 2015. Effects and interactions of genes Lr34, Lr68 and Sr2 on wheat leaf rust adult plant resistance in Uruguay. Euphytica 204:599608.

    • Search Google Scholar
    • Export Citation
  • Singh, A., Pandey, M., Singh, A., Knox, R., Ammar, K., Clarke, J., Clarke, F., Singh, R.P., Pozniak, C.J., DePauw, R.M., McCallum, B.D., Cuthbert, R.D., Randhawa, H.S., Fetch, T.G. 2013. Identification and mapping of leaf, stem and stripe rust resistance quantitative trait loci and their interactions in durum wheat. Mol. Breed. 31:405418.

    • Search Google Scholar
    • Export Citation
  • Singh, R., Huerta-Espino, J., Rajaram, S., Barna, B., Kiraly, Z. 2000. Achieving near-immunity to leaf and stripe rusts in wheat by combining slow rusting resistance genes. Acta Phytopathol. Entomol. Hung. 35:133139.

    • Search Google Scholar
    • Export Citation
  • Singh, R.P. 1992. Association between gene Lr34 for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci. 32:874878.

  • Singh, R.P., Huerta-Espino, J., William, H.M. 2005. Genetics and breeding for durable resistance to leaf and stripe rusts in wheat. Turk. J. Agric. For 29:121127.

    • Search Google Scholar
    • Export Citation
  • Singh, R.P., Hodson, D.P., Huerta-Espino, J., Jin, Y., Njau, P., Wanyera, R., Herrera-Foessel, S.A., Ward, R.W. 2008. Will stem rust destroy the world’s wheat crop? Adv. Agron. 98:271309.

    • Search Google Scholar
    • Export Citation
  • Stakman, E.C., Stewart, D.M., Loegering, W.Q. 1962. Identification of physiologic races of Puccinia graminis var. tritici. U.S, Agric. Res. Serv. ARS E 617:153.

    • Search Google Scholar
    • Export Citation
  • Terefe, T., Visser, B., Herselman, L., Selinga, T., Pretorius, Z. 2014. First report of Puccinia triticina (leaf rust) race FBPT on wheat in South Africa. Australas. Plant Path. 44:217.

    • Search Google Scholar
    • Export Citation
  • Tsilo, T.J., Kolmer, J.A., Anderson, J.A. 2014. Molecular mapping and improvement of leaf rust resistance in wheat breeding lines. Phytopathol. 104:865870.

    • Search Google Scholar
    • Export Citation
  • William, H.M., Singh, R.P., Huerta-Espino, J., Palacios, G., Suenaga, K. 2006. Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat. Genome 49:977990.

    • Search Google Scholar
    • Export Citation