Authors:
Y. WangCollege of Science, Nanjing Agricultural University, Nanjing 210095, P.R. China
College of Mathematics and Information Technology, Nanjing Xiaozhuang University, Nanjing 211171, P.R. China

Search for other papers by Y. Wang in
Current site
Google Scholar
PubMed
Close
and
L. Y. ZhangCollege of Science, Nanjing Agricultural University, Nanjing 210095, P.R. China

Search for other papers by L. Y. Zhang in
Current site
Google Scholar
PubMed
Close
Restricted access

Abstract

We obtain the structure theorem for -Hopf bimodules over Hopf algebroids, where H is the total algebra of the Hopf algebroid . Based on this theorem, we investigate the structure theorem for comodule algebras over Hopf algebroids.

  • [1] Militaru, G., Stefan, D. 1994 Extending modules for Hopf Galois extensions Comm. Algebra 22 56575678 .

  • [2] Panaite, F., Oystaeyen Van, F. 2007 A structure theorem for quasi-Hopf comodule algebras Proc. Amer. Math. Soc. 135 16691677 .

  • [3] Böhm, G., Szlachányi, K. 2004 Hopf algebroids with bijective antipodes: axioms, integrals and duals J. Algebras 274 708750 .

  • [4] Böhm, G. 2005 An Alternative Notion of Hopf Algebroids Lect. Notes Pure Appl. Math. 239 New York.

  • [5] Böhm, G. 2005 Integral theory for Hopf algebroids Algebr. Repesent. Th. 8 563599 . Corrigendum, doi:10.1007/s10468-009-9167-0.

  • [6] Takeuchi, M. 1977 Groups of algebras over J. Math. Soc. Japan 29 459492 .

  • [7] Lu, J. H. 1996 Hopf algebroids and quantum groupoids Internat. J. Math. 7 4770 .

  • [8] Xu, P. 2001 Quantum groupoids Comm. Math. Phys. 216 539581 .

  • [9] Kadison, L., Szlachányi, K. 2003 Bialgebroid actions on depth two extensions and duality Adv. Math. 179 75121 .

  • [10] Böhm, G., Nill, F., Szlachányi, K. 1999 Weak Hopf algebras I. Integral theory and C-structure J. Algebra 221 385438 .

  • [11] Böhm, G. 2009 Hopf Algebroids Handbook of Algebra 6 Elsevier.

  • [12] Morava, J. 1985 Noetherian localisations of categories of cobordism comodules Ann. Math. 121 139 .

  • [13] Mrc̆un, J. 2001 The Hopf algebroids of functions on étale groupoids and their principal Morita equivalence J. Pure Appl. Algebra 160 249262 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [14] Ardizzoni, A., Böhm, G., Menini, C. 2007 A Schneider type theorem for Hopf algebroids J. Algebra 318 225269 .

  • [15] Sweedler, M. E. 1975 Groups of simple algebras I.H.E.S., Publ. 44 79189.

  • [16] Sweedler, M. E. 1975 The predual theorem to the Jacobson-Bourbaki theorem Trans. Amer. Math. Soc. 213 391406 .

  • [17] Brzeziński, T., Wisbauer, R. 2003 Corings and Comodules Cambridge University Press Cambridge . http://www.maths.swan.ac.uk/staff/tb/corings.htm.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • [18] Böhm, G., Brzeziński, T. 2006 Cleft extensions of Hopf algebroids Appl. Categor. Struct. 14 431469 . Corrigendum, 17 (2009), 613–620.

  • [19] Böhm, G. 2005 Galois theory for Hopf algebroids Ann. Univ. Ferrara-Sez. VII-Sc. Mat. LI 233262.

  • [20] Böhm, G. 2006 Galois extensions over commutative and noncommutative base Caenepeel, S., Oystaeyen Van, F. (eds.) New Techniques in Hopf Algebras and Graded Ring Theory http://arxiv.org/abs/math/0701064v2.

    • Search Google Scholar
    • Export Citation
  • [21] Böhm, G., Vercruysse, J. 2009 Corrigendum to “Morita theory for coring extensions and cleft bicomodules” [Adv. Math., 209 (2007), 611–648] Adv. Math. 221 682686 .

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Collapse
  • Expand
  • Top

To see the editorial board, please visit the website of Springer Nature.

Manuscript Submission: HERE

For subscription options, please visit the website of Springer Nature.

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia  
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Mar 2022 0 0 0
Apr 2022 1 0 0
May 2022 0 0 0
Jun 2022 2 0 0
Jul 2022 3 0 0
Aug 2022 0 0 0
Sep 2022 0 0 0