View More View Less
  • 1 Institute of Mathematics, Polish Academy of Sciences, Warsaw, Poland
  • | 2 Jan Kochanowski University, Kielce, Poland
Restricted access

Cross Mark

Abstract

We derive differential relations between spherical and solid means of continuous functions. Next we use the relations to give inductive proofs of the mean value property for polyharmonic functions and its converse in arbitrary dimension.

  • [1] Aronszajn, N., Creese, T. M., Lipkin, L. J. 1983 Polyharmonic Functions Clarendon Press Oxford.

  • [2] Axler, S., Bourdon, P., Ramey, W. 1992 Harmonic Function Theory Graduate Texts in Mathematics 137 Springer-Verlag New York.

  • [3] Beckenbach, E. F., Reade, M. 1945 Mean values and harmonic polynomials Trans. AMS 51 240245.

  • [4] Bojanov, B. 2001 An extension of the Pizzetti formula for polyharmonic functions Acta Math. Hungar. 91 99113 .

  • [5] Bramble, J. H., Payne, L. E. 1966 Mean value theorems for polyharmonic functions Amer. Math. Monthly 73 124127 .

  • [6] Courant, R., Hilbert, D. 1962 Methods of Mathematical Physics II Interscience Publishers New York.

  • [7] Friedman, A. 1957 Mean-values and polyharmonic polynomials Michigan Math. J. 4 6774 .

  • [8] Ghermanesco, M. 1934 Sur les moyennes successives des fonctions Bull. Soc. Math. France 62 245264.

  • [9] Ghermanescu, M. 1944 Sur les moyennes successives des fonctions Math. Ann. 119 288320 .

  • [10] Nicolesco, M., Les Fonctions Polyharmoniques, Hermann & Cie Éditeurs (Paris, 1936).

  • [11] Pizzetti, P., Sulla media dei valori che una funzione dei punti dello spazio assume alla superficie di una sfera, Rendiconti Lincei, serie V, 18 (1909), 182185.

    • Search Google Scholar
    • Export Citation
  • [12] Pizzetti, P., Sul significato geometrico del secondo parametro differenziale di una funzione sopra una superficie qualunque, Rendiconti Lincei, serie V, 18 (1909), 309316.

    • Search Google Scholar
    • Export Citation
  • [13] Sbrana, F., Sopra una proprietá caratteristica delle funzioni poliarmoniche e delle soluzioni dell’equazione delle membrane vibranti, Rendiconti Lincei, serie VI, 1 (1925), 369371.

    • Search Google Scholar
    • Export Citation
All Time Past Year Past 30 Days
Abstract Views 4 4 1
Full Text Views 2 1 0
PDF Downloads 2 0 0