View More View Less
  • 1 Faculty of Mathematics and Computer Science, University of Łódź, ul. Banacha 22, 90-238 Łódź, Poland
Restricted access

Abstract

In this note noncommutative versions of Etemadi's SLLN and Petrov's SLLN are given. As a noncommutative counterpart of the classical almost sure convergence, the almost uniform convergence of measurable operators is used.

  • [1] Batty, C. J. K. 1979 The strong law of large numbers for states and traces of a W*-algebra Z. Wahrsch. Verw. Gebiete 48 177191 .

  • [2] Etemadi, N. 1981 An elementary proof of the strong law of large numbers Z. Wahrsch. Verw. Gebiete 55 119122 .

  • [3] Jajte, R. 1985 Strong Limit Theorems in Non-commutative Probability Lect. Notes in Math. 1110 Springer Berlin–Heidelberg–New York.

    • Search Google Scholar
    • Export Citation
  • [4] Łuczak, A. 1985 Laws of large numbers in von Neumann algebras and related results Studia Math. 81 231243.

  • [5] Nelson, E. 1974 Notes on non-commutative integration J.  Funct.  Anal. 15 103116 .

  • [6] Petrov, V. V. 1972 Sums of Independent Random Variables Nauka Moscow (in Russian).

  • [7] Segal, I. E. 1953 A non-commutative extension of abstract integration Ann. of Math. 57 401457 .

  • [8] Yeadon, F. J. 1975 Non-commutative LP-spaces Math. Proc. Cambridge Philos. Soc. 77 91102 .

Acta Mathematica Hungarica
P.O. Box 127
HU–1364 Budapest
Phone: (36 1) 483 8305
Fax: (36 1) 483 8333
E-mail: acta@renyi.mta.hu

  • Impact Factor (2019): 0.588
  • Scimago Journal Rank (2019): 0.489
  • SJR Hirsch-Index (2019): 38
  • SJR Quartile Score (2019): Q2 Mathematics (miscellaneous)
  • Impact Factor (2018): 0.538
  • Scimago Journal Rank (2018): 0.488
  • SJR Hirsch-Index (2018): 36
  • SJR Quartile Score (2018): Q2 Mathematics (miscellaneous)

For subscription options, please visit the website of Springer Nature

Acta Mathematica Hungarica
Language English
Size B5
Year of
Foundation
1950
Volumes
per Year
3
Issues
per Year
6
Founder Magyar Tudományos Akadémia
Founder's
Address
H-1051 Budapest, Hungary, Széchenyi István tér 9.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN 0236-5294 (Print)
ISSN 1588-2632 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Apr 2021 0 0 0
May 2021 1 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0