Authors: B. Howell 1 and C. Rajaram
View More View Less
  • 1 Central Michigan University Center for Applications in Polymer Science Department of Chemistry 48859 Mt. Pleasant MI USA
Restricted access


Vinylidene chloride copolymers have a number of superior properties, most notably, a high barrier to the transport of oxygen and other small molecules. As a consequence, these materials have assumed a position of prominence in the packaging industry. At processing temperatures these copolymers tend to undergo degradative dehydrochlorination. The dehydrochlorination reaction is a typical chain process with distinct initiation, propagation, and termination phases. It has been demonstrated that initiation of degradation is strongly facilitated by the presence of unsaturation along the backbone. Such unsaturation may be introduced via interaction of the polymer with a variety of agents which might commonly be encountered during polymerization or processing. The presence of an unsaturated unit within the polymer generates an allylic dichloromethylene which may function as a major defect (labile) site for the initiation of degradation. The conversion of these dichloromethylene units into non-reactive groups would interrupt propagation of the dehydrochlorination reaction and lead to the stabilization of the copolymer. Potential stabilization in the presence of metal formates has been examined using a vinylidene chloride/methyl acrylate (five mole percent) copolymer and thermogravimetric techniques. The effect of the metal formate on the stability of the polymer reflects the relative halogenophilicity of the metal cation present. Metal formates (sodium, calcium, nickel(II) and to a lesser extent lead(II), cadmium, manganese(II) and magnesium) may be expected to be ineffective as stabilizers for vinylidene chloride copolymers. At the other extreme, metal formates which contain cations sufficiently acidic to actively strip chlorine from the polymer backbone, e.g., zinc formate, will function to enhance the degradation process. An effective carboxylate stabilizer must contain a metal cation sufficiently acidic to interact with allylic chlorine and to facilitate its displacement by the carboxylate anion. Copper(II) formate may possess the balance of cation acidity and carboxylate activity to function as an effective stabilizer for vinylidene chloride copolymers.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Jun 2021 0 0 0
Jul 2021 1 0 0
Aug 2021 1 0 0
Sep 2021 1 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0
Dec 2021 0 0 0