View More View Less
  • 1 University of Sheffield Department of Engineering Materials Mappin Street S1 4DU Sheffield UK
Restricted access


A theoretical approach has been used to show that, except for certain types of reaction mechanism, the ease with which it is possible to distinguish the form of the reaction mechanism by the reduced-time plot method depends particularly on the rate of transfer of heat into the sample. The original reduced-time plots [1] were calculated from model equatioons which assume that the sample is, from the outset, at a fixed temperature and remains under isothermal conditions throughout the reaction. The variations produced in the appearance of reduced-time plots when the sample is programmed to rise to a given fixed temperature through various temperature schedules have been investigated. It is shown that even relatively rapid temperature rises can produce distortion of the reduced-time plots for various reaction equations. If the reaction mechanism is known, however, fairly accurate values of the activation energy for the reaction can be determined, even when the furnace used has relatively poor heat-transfer characteristics.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
May 2021 0 0 0
Jun 2021 0 0 0
Jul 2021 0 0 0
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 0 0
Nov 2021 0 0 0