Authors: H. Kim, H. Kim 2 , and D. Cho 3
View More View Less
  • 1 Seoul National University Laboratory of Adhesion and Bio-Composites, Program in Environmental Materials Science, Research Institute for Agriculture and Life Sciences Seoul 151-921 South Korea
  • | 2 Ecol-Green Co., LTD Research and Development Department of Biopolymer Incheon 405-820 South Korea
  • | 3 Kumoh National Institute of Technology Department of Polymer Science and Engineering Gumi 730-701 South Korea
Restricted access


The purpose of this study was to conduct a thermal analysis of the hydrolysis and degradation behavior of biodegradable polymers and bio-composites at 50°C and 90% relative humidity (RH). With increasing hydrolysis time, the thermal stability and degradation temperature of polybutylene succinate (PBS) slightly decreased. The glass transition temperature (T g) and melting temperature (T m) of PBS and the anti-hydrolysis agent treated PBS did not vary significantly with increasing hydrolysis time, whereas those of the trimethylolpropane triacrylate (TMPTA)-treated PBS slightly increased. With increasing hydrolysis time, the storage modulus (E’) values of the bio-composites decreased, whereas those of the TMPTA treated bio-composites slightly increased. Also, the tan values of the anti-hydrolysis agent and TMPTA treated PBS-BF bio-composites were slightly lower than those of the non-treated bio-composites, due to the reduction in their degree of hydrolysis. The tanδmax peak temperature (T g) of the anti-hydrolysis agent treated bio-composites was not significantly changed, whereas that of the TMPTA treated bio-composites was increased.

Manuscript Submission: HERE

  • Impact Factor (2019): 2.731
  • Scimago Journal Rank (2019): 0.415
  • SJR Hirsch-Index (2019): 87
  • SJR Quartile Score (2019): Q3 Condensed Matter Physics
  • SJR Quartile Score (2019): Q3 Physical and Theoretical Chemistry
  • Impact Factor (2018): 2.471
  • Scimago Journal Rank (2018): 0.634
  • SJR Hirsch-Index (2018): 78
  • SJR Quartile Score (2018): Q2 Condensed Matter Physics
  • SJR Quartile Score (2018): Q2 Physical and Theoretical Chemistry

For subscription options, please visit the website of Springer.

Journal of Thermal Analysis and Calorimetry
Language English
Size A4
Year of
per Year
per Year
Founder Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Publisher Akadémiai Kiadó
Springer Nature Switzerland AG
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
CH-6330 Cham, Switzerland Gewerbestrasse 11.
Chief Executive Officer, Akadémiai Kiadó
ISSN 1388-6150 (Print)
ISSN 1588-2926 (Online)