View More View Less
  • 1 Budapesti Műszaki és Gazdaságtudományi Egyetem, Gépjárműtechnológia Tanszék [Budapest Technical and Economic University, Faculty of Transportation Engineering and Vehicle Egngineering], Budapest, Hungary

Összefoglalás. A XXI. század első felében a korábban sok évtizeden keresztül lassan változó közlekedés gyorsított ütemben alakul át. Ez alatt a pár év alatt több változás következik be, több kihívást kell leküzdeni, mint a korábbi időszakban. Az elektromos hajtás térnyerése, új járműhasználati módok mellett a járművek autonomizálódása és összekapcsolódása jelenti az új irányokat, amelyek kihívás elé állítják nemcsak az autóipart, hanem a járművek használóit és a szabályzókat, az államot is. Kutatásainkban az önvezető autózás jelentette kihívásokat emeljük ki a többi, röviden bemutatott trend közül, majd pedig vizsgáljuk, milyen kihívásokat támaszt a digitalizálódó állam felé az önvezetés felé elmozduló járműves technológia.

Summary. In the first half of the 21st century, transportation that has been slowly changing over many decades has been transforming at an accelerated rate. Over the course of these few years, there will be more changes and more challenges to overcome. For a century it was unquestionable that a vehicle is driven by a driver and its energy comes via diesel or petrol from crude oil. Today vehicles’ autonomy in driving is increasing, and instead of crude oil based fuels first biocomponents and gaseous fuels appeared, and now electricity knocks at the door. The proliferation of the electric driving, the new modes of vehicle use, and the autonomy and connectivity of vehicles represent new directions that challenge not only the automotive industry, but also vehicle users and regulators, and the states. New technologies bring about new security and safety challenges as well. Most of the challenges pop up in the cyber security domain. And its result is that a closer cooperation is necessary between the automotive industry and informatics. As these two leading industrial fields have a different setup, the cooperation is energy demanding task for all participants. Modification and upgrade of the homologation process seems to be one of the potential gateways that could merge the safety requests. Improving traditionally rigid automotive homologation processes needs a lot of extended test opportunities. In our research, we highlight the challenges posed by self-driving cars and show some trends briefly, and then examine the challenges posed by vehicle technology moving towards self-driving, and towards digitizing. The certification process of the automotive industry is highlighted and modifications are proposed. We propose to extend the traditional proving ground based certification processes with special, autonomous vehicles designed processes that are partially made within the virtual reality-proving ground mixtures. A newly designed proving ground not only offers a wide range of vehicle and traffic tests for conventional, connected and automated vehicles, but can also be used to test possible prototype solutions, as well as helps to develop the type-approval process, and useful for educational purposes. Cyber security has special dimensions, newly developed test environment is necessary to validate the vehicles and their elements. A complete vehicle testing and validation center is proposed to establish for automotive cyber security features, focusing not only on known, but also on unknown vulnerabilities. It will help to develop dedicated tests to eliminate unknown vulnerabilities and potential new vulnerabilities.

If the inline PDF is not rendering correctly, you can download the PDF file here.

  • Csiszár Cs. , 'Demand Calculation Method for Electric Vehicle Charging Station Locating and Deployment ' (2019 ) 63 (1 ) Periodica Polytechnica – Civil Engineering : 255 -265.

    • Search Google Scholar
    • Export Citation
  • Emőd I., Tölgyessi Z. & Zöldy M. , Alternatív Járműhajtások , (Maróti könyvkereskedés és könyvkiadó Kft. , Budapest 2006 ) pp. 232.

  • Goodfellow I., Bengio Y. & Courville A. , Deep learning , (MIT press, Cambridge, MA 2016 ).

  • Grzywaczewski A. Training AI for Self-Driving Vehicles: the Challenge of Scale 09 10 2017 https://devblogs.nvidia.com/training-self-driving-vehicles-challenge-scale/

    • Search Google Scholar
    • Export Citation
  • Kasper A. & Krasznay Cs. , 'Towards Pollution-Control in Cyberspace: Problem Structure and Institutional Design in International Cybersecurity ' (2019 ) 19 (2 ) International and Comparative Law Review : 76 -96.

    • Search Google Scholar
    • Export Citation
  • Pinchon N., Khedher I., Cassignol O., Nicolas A., Bernardin F., Leduc P., Tarell J.P., Brémond R., Bercier E. & Julien G. , 'Allweather vision for automotive safety: which spectral band? ' VISION SIA , , https://www.researchgate.net/publication/309291304_All-weather_vision_for_automotive_safety_which_spectral_band.

    • Search Google Scholar
    • Export Citation
  • Rödönyi G., Gáspár P., Bokor J. & Palkovics L. , 'Experimental verification of robustness in a semi-autonomous heavy vehicle platoon ' (2014 ) 28 (1 ) Control Engineering Practice : 13 -25.

    • Search Google Scholar
    • Export Citation
  • Sabjanics I, Az online oktatási forma alkalmazásának lehetősége a képzési struktúrában Gazdasági élet és társadalom 2010 157 163

  • Szalay Zs., Hamar Z. & Nyerges Á. , 'Novel design concept for an automotive proving ground supporting multilevel CAV development ' (2019 ) 80 (1 ) International Journal of Vehicle Design : 1 -22.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Szalay Zs. , 'Structure and Architecture Problems of Autonomous Road Vehicle Testing and Validation ' 15th VSDIA 2016 , , Budapest, Hungary .

    • Search Google Scholar
    • Export Citation
  • Tettamanti T., Varga I. & Szalay Zs. , 'Impacts of Autonomous Cars from a Traffic Engineering Perspective ' (2016 ) 44 (4 ) Periodica Polytechnica, Transportation Engineering, Hungary : 244 -250.

    • Crossref
    • Search Google Scholar
    • Export Citation
  • Wang Mowei, Cui Yong, Wang Xin, Xiao Shihan & Jiang Junchen , 'Machine Learning for Networking: Workflow, Advances and Opportunities ' (2018 ) 32 (2 ) IEEE Network , 03 .

  • Zöldy M. , 'Automotive Industry Solutions in Response to European Legislative Emission Regulation Challenge ' (2009 ) 1 (6 ) Science – Future of Lithuania / Mokslas – Lietuvos Ateitis : 33 -40.

    • Search Google Scholar
    • Export Citation
  • Nagyvárad, Románia EMT 2016 Zöldy M. J. Csibi & B. Fülöp (eds)Új kihívások előtt az autóipar a dízelbotrány után Országos Gépészeti Találkozó 2016 101 105

    • Search Google Scholar
    • Export Citation
  • Zöldy M. Investigation of autonomous vehicles fit into traditional type approval process Proceedings of ICCTE 2018 Beograde 517 521 2018

    • Search Google Scholar
    • Export Citation