Összefoglaló. A COVID–19-járvány alatt bizonyossá vált, hogy az adattudományok, az adatok gyors megosztása és a nemzetközi összefogás a hatékony járványkezelés kulcsfontosságú eszközei. A járvány előtt létrejött Újonnan Felbukkanó fertőző betegségek Obszervatóriuma (Versatile Emerging infectious disease Observatory, VEO) nevű nemzetközi konzorcium célja egy olyan monitorozó rendszer kiépítése, amely a potenciálisan veszélyes kórokozókat még az előtt azonosítja, mielőtt azok tömeges megbetegedéseket okoznának, lehetőséget adva ezzel a gyors reagálásra. A járványok megelőzésére és kezelésére létrejött nemzetközi együttműködésekben, így a VEO-ban is a kórokozók, vagy a fertőzésnek kitett személyek genetikai szekvencia adatai kiemelkedő fontosságúak. Az ilyen típusú adatok kezelésével kapcsolatban az Európai Unióban többek között a Nagojai Jegyzőkönyv és a GDPR fogalmaz meg elveket, szabályokat.
Summary. Data science is proved to be a key tool in the fight against the ongoing COVID-19 pandemic, but it requires a huge amount of data shared between international research groups. The Versatile Emerging infectious disease Observatory (VEO) EU collaboration was established to generate and distribute high quality data for an evidence-based early warning system for emerging infectious diseases. Through an iterative process between data scientists, disease experts, social scientists and citizen scientists, a collaborative platform will be created for storing, secure sharing and analyses of traditional and new data sources. Next generation sequencing (NGS) has revolutionized genomic research. This versatile technology is broadly applicable to pathogens and human hosts. Rapid sharing of pathogen genetic resources, including physical samples of cultured pathogens and additionally genetic sequencing data of pathogens, is crucial in support of research and outbreak response. Access to genetic resources is regulated by the Nagoya protocol which is an internationally binding treaty to ensure equal sharing of benefits arising from the use of genetic resources. So far the Nagoya protocol has been applied only to biological samples, but digital data from genetic sequencing doesn’t necessarily fall under the treaty. Effects of diseases can differ based on genetic backgrounds, as certain gene variants may provide protection against or susceptibility to viral diseases. Human genomic data is an important resource for medical research. The General Data Protection Regulation (GDPR) lists identifiable human genetic data as sensitive, which is a subset of personal data. Sharing and analysis of this kind of data are strictly regulated and they are also subject to ethical challenges. These concerns become less pronounced when analyzing environmental samples like sewage. Samples collected from wastewater treatment plants can be used as pooled samples, containing naturally anonymized genetic information of the human population, near the wastewater treatment plant.
03/2020. iránymutatások az egészségügyi adatoknak a Covid-19 járvánnyal összefüggésben végzett tudományos kutatás céljából történő kezeléséhez. https://edpb.europa.eu/sites/edpb/files/files/file1/edpb_guidelines_202003_healthdatascientificresearchcovid19_hu_0.pdf
Abd-Alrazaq, A., Alhuwail, D., Househ, M., Hamdi, M., & Shah, Z. (2020) Top concerns of tweeters during the COVID-19 pandemic: Infoveillance study. J Med Internet Res., Vol. 22. No. 4. pp. 491–197. .
Ábránd R., Sándor J., & Brand A. (2012) Népegészségügyi genomika. Budapest, Medicina
Aly, S. & Bolbol, D. (2015) Next generation sequencing (NGS): A golden tool in forensic toolkit. Archives of Forensic Medicine and Criminology, Vol. 65. No. 4. pp. 260–271. .
Amid, C., Pakseresht, N., Silvester, N., Jayathilaka, S., Lund, O., Dynovski, L. D., et al. (2019) The COMPARE Data Hubs. Database, Vol. 2019. .
Ashton J. (2020) COVID-19 and the ‘spanish’ flu. Journal of the Royal Society of Medicine, Vol. 113. No. 5. pp. 197–198. .
COMPARE: Collaborative management platform for detection and analyses of (re-)emerging and foodborne outbreaks in europe. https://www.compare-europe.eu/about
Durazzi, F., Müller, M., Salathé, M., & Remondini, D. (2020) International expert communities on twitter become more isolated during the COVID-19 pandemic. arXiv preprint arXiv:201106845
Európai Bizottság (é. n.) Mit nevezünk személyes adatnak? https://ec.europa.eu/info/law/law-topic/data-protection/reform/what-personal-data_hu#pldk-nem-szemlyes-adatnak-minsl-adatra
GISAID: The GISAID initiative for rapid sharing of data from all influenza viruses and the coronavirus causing COVID-19. https://www.gisaid.org/
Gough, N. R. (2020) Defining a new strain of a virus. BioSerendipity, https://www.bioserendipity.com/defining-a-new-strain-of-a-virus/
Guo, J., Radloff, C. L., Wawrzynski, S. E., & Cloyes, K. G. (2020) Mining twitter to explore the emergence of COVID-19 symptoms. Public Health Nursing, Vol. 37. No. 6. pp. 934–940.
Izquierdo-Lara, R. W., Elsinga, G., Heijnen, L., Munmink, B. B. O., Schapendonk, C. M. E., Nieuwenhuijse, D., et al. (2021) Monitoring SARS-CoV-2 circulation and diversity through community wastewater sequencing. Emerging Infectious Diseases. Vol. 27. https://wwwnc.cdc.gov/eid/article/27/5/20-4410_article
Jahn, K., Dreifuss, D., Topolsky, I., Kull, A., Ganesanandamoorthy, P., Fernandez-Cassi, X., et al. (2021) Detection of SARS-CoV-2 variants in switzerland by genomic analysis of wastewater samples. medRxiv. .
Kitajima, M., Ahmed, W., Bibby, K., Carducci, A., Gerba, C. P., Hamilton, K. A., Haramoto, E., & Rose, J. B. (2020) SARS-CoV-2 in wastewater: State of the knowledge and research needs. Science of The Total Environment, Vol. 739. .
Lafin, J. T., Bagrodia, A., Woldu, S., Amatruda, J. (2019) New insights into germ cell tumor genomics. Andrology, Vol. 7. No. 4. pp. 507–515. .
McColgan, P. & Tabrizi, S. J. (2018) Huntington’s disease: A clinical review. European Journal of Neurology, Vol. 25. No. 1. pp. 24–34. .
Nagojai Jegyzőkönyv. A genetikai erőforrásokhoz való hozzáférés és a hasznosításukból származó előnyök megosztása. https://eur-lex.europa.eu/legal-content/HU/TXT/?uri=LEGISSUM:20110303_1
Nations U. UN Convention on Biological Diversity. www.cbd.int/convention/text/default.shtml;
Navarro, F., Mohsen, H., Yan, C., Li, S., Gu, M., Meyerson, W. et al. (2019) Genomics and data science: An application within an umbrella. Genome Biology, 20. .
Panuganti, B. A., Jafari, A., MacDonald, B. & DeConde, A. S. (2020) Predicting COVID-19 incidence using anosmia and other COVID-19 symptomatology: Preliminary analysis using google and twitter. Otolaryngology–Head and Neck Surgery, Vol. 163. No. 3. pp. 491–197. .
Pipek O. A., Medgyes-Horváth A., Dobos L., Stéger J., Szalai-Gindl J., Kaas D. V. R. S., et al. (2019) Worldwide human mitochondrial haplogroup distribution from urban sewage. Scientific Reports, Vol. 9. .
Reed, K. D., Meece, J. K., Henkel, J. S., Shukla, S. K. (2003) Birds, migration and emerging zoonoses: West nile virus, lyme disease, influenza a and enteropathogens. Clinical Medicine & Research, Vol. 1. No. 1. pp. 5–12. .
Ritchie, H., Ortiz-Ospina, E., Beltekian, D., Mathieu, E., Hasell, J., Macdonald B. et al. Coronavirus pandemic (COVID-19). https://ourworldindata.org/coronavirus
Róka E., Khayer B., Schuler E., Kovács B. L., Magyar N., Kiss Z., et al. (2020) Koronavírus a szennyvízben: Országos korai előrejelző rendszer kialakítása. Hírcsatorna, 2020: 17–25.
S. Ribeiro, C. dos, Koopmans, M. P., & Haringhuizen, G. B. (2018) Threats to timely sharing of pathogen sequence data. Science, Vol. 362. No. 6413. pp. 404–406. .
Sajjad, W., Rafiq, M., Din, G., Hasan, F., Iqbal, A., Zada, S., et al. (2020) Resurrection of inactive microbes and resistome present in the natural frozen world: Reality or myth? Science of The Total Environment, Vol. 735. .
Semenza, J. C. & Suk, J. E. (2017) Vector-borne diseases and climate change: a European perspective. FEMS Microbiology Letters. Vol. 365. No. 2. .
The european COVID-19 data platform. https://www.covid19dataportal.org/
Versatile emerging infectious disease observatory (VEO). https://www.veo-europe.eu/
Visontai D., Stéger J., Szalai-Gindl J. M., Dobos L., Oroszlány L., & Csabai I. E. (2019) Kooplex: Collaborative data analytics portal for advancing sciences. arXiv preprint http://arXiv.org/abs/191109553.