View More View Less
  • 1 NETI Lab, CIAS, Budapesti Corvinus Egyetem, Budapest, Magyarország; NETI Lab, CIAS, Corvinus University, Budapest, Hungary
  • | 2 ANET Lendület Csoport, KRTK, Budapest, Magyarország; Agglomeration and Social Networks, MTA Lendület Research Group Centre for Economic and Regional Studies, Budapest, Hungary
  • | 3 MTA–ELTE Statisztikus és Biológiai Fizika Kutatócsoport, ELKH, Biológiai Fizika Tanszék, ELTE, Budapest, Magyarország; MTA-ELTE Statistical and Biological Physics Research Group, ELKH, Dept. of Biological Physics, ELTE, Budapest, Hungary
  • | 4 Egészségügyi Menedzserképző Központ, Semmelweis Egyetem, Budapest, Magyarország; Health Services Management Training Centre, SE, Budapest, Hungary
Open access

Összefoglaló. Tanulmányunkban bemutatjuk a hazai COVID-járvány első hulláma során kidolgozott informatikai megoldást, amely a kontaktkutatást hálózattudományi megközelítés alapján segítette, és hozzájárult az első hullám sikeres megfékezéséhez.

A kifejlesztett vizuális reprezentációs technika látványos és részletekbe menő megértést, problémafeltárást képes biztosítani a járványügyi szakemberek számára. A grafikus elemek segítenek a gyors megértésben, a különböző hálózati elrendezések bizonyos jelenségekre, például gócpontokra, fertőzési klikkekre vagy a földrajzi terjedésre irányíthatják a figyelmet. A böngészőből történő futtatás alacsony technológiai belépési küszöböt biztosít a társterületeken kutatók számára, nekik így nem szükséges a problémafeltáráshoz külön szoftvereket telepíteni. Az adatbázis SQL-alapú szűrése a vizualizációs felületről lehetőséget biztosít összetettebb kérdések megfogalmazására is.

Summary. In our study, we present an IT solution developed during the first wave of the domestic COVID epidemic. This tool served as an aid for contact tracing. The development focused on the network scientific aspects and contributed to the successful handling of the first wave.

In case of absence of effective drugs or vaccines, controlling a contagious disease can only be achieved by preventing its spread. To this end

  • infectious individuals must be identified,

  • patients, exposed to the infection must be identified,

  • the epidemic branching points that cause the greatest infection must be uncovered,

  • information on the course of the disease must be collected,

  • temporal and efficacy parameters must be determined, and

  • potential cases of infection must be described.

One possible way to accomplish these tasks is achieved by contact tracing. Classical contact tracing is carried out by personal data collection, during which the commissioned epidemiologist has to fill in a questionnaire. The questionnaire basically includes data used to identify the infected person, as well as the data of the persons who were in contact with the infected person, i.e. in contact with them. The effectiveness of the research is also enhanced if the questionnaire records disease-related parameters (e.g., symptoms, timing-related times, etc.) as well. Once the disease is known, questionnaires can be designed according to a definite template format, the organization of data collection groups and the associated costs can be planned in advance. However, in the case of a new, unknown disease, flexibility and the ability to adapt quickly during data collection are of paramount importance.

The developed visual representation technique is able to provide spectacular and detailed understanding and a problem-solving user interface for epidemiologists. Graphical elements help in quick understanding, different network layouts can direct the attention to certain phenomena such as focal points, infectious cliques, or geographical spreading patterns. Running from a browser provides a low technology entry threshold for researchers in other scientific fields, so they don’t need to install separate software. The SQL-based filtering of the database on the visualization interface also provides an opportunity to study more complex questions.

Thus, with the help of the presented computer system, a relational database can be generated from the initially unstructured data of the contact research protocols through several steps. The relational database is made available to analysts and decision-makers.

As the final balance of the first wave of COVID-19 in Hungary showed, data from well-organized contact research and processed in appropriate analytical tools can provide important information for controlling the epidemic and saving lives.

  • 1

    Anglemyer, A., Moore, T., Parker, L., Chambers, T., Grady, A., Chiu, K., Parry, M., Wilczynska, M., Flemyng, E., & Bero, L. (2020) Digital contact tracing technologies in epiDemics: A rapid review. The Cochrane Database of Systematic Reviews, Vol. 41. No. 9. p. 1028. https://doi.org/10.1002/14651858.CD013699

  • 2

    Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to Algorithms, Third Edition (3rd ed.). The MIT Press

  • 3

    Dash (2021) Dash Overview. https://plotly.com/dash/ [Letöltve: 2021. 05. 06.]

  • 4

    Dhillon, R. S., & Srikrishna, D. (2018) When is contact tracing not enough to stop an outbreak? The Lancet Infectious Diseases, Vol. 18. pp. 1302–1304. https://doi.org/10.1016/S1473-3099(18)30656-X

  • 5

    Dubov, A., & Shoptawb, S. (2020) The Value and Ethics of Using Technology to Contain the COVID-19 Epidemic. The American Journal of Bioethics, Vol. 20. No. 7. pp. W7–W11. https://doi.org/10.1080/15265161.2020.1764136

  • 6

    Endo, A., Leclerc, Q. J., Knight, G. M., Medley, G. F., Atkins, K. E., Funk, S., & Kucharski, A. J. (2021) Implication of backward contact tracing in the presence of overdispersed transmission in COVID-19 outbreaks. Wellcome Open Research, Vol. 5. p. 239. https://doi.org/10.12688/wellcomeopenres.16344.3

  • 7

    Faye, O., Boëlle, P.-Y., Heleze, E., Faye, O., Loucoubar, C., Magassouba, N., Cauchemez, S. et al. (2015) Chains of transmission and control of Ebola virus disease in Conakry, Guinea, in 2014: an observational study. The Lancet Infectious Diseases, Vol. 15. No. 3. pp. 320–326. https://doi.org/10.1016/S1473-3099(14)71075-8

  • 8

    graph_tool.draw (2021) Graph drawing and layout — graph-tool 2.37 documentation. https://graph-tool.skewed.de/static/doc/draw.html#graph_tool.draw.sfdp_layout [Letöltve: 2021. 05. 06.]

  • 9

    Koetter, P., Pelton, M., Gonzalo, J., Du, P., Exten, C., Bogale, K. et al. (2020) Implementation and Process of a COVID-19 Contact Tracing Initiative: Leveraging Health Professional Students to Extend the Workforce During a Pandemic. American Journal of Infection Control, Vol. 48. No. 12. pp. 1451–1456. https://doi.org/10.1016/j.ajic.2020.08.012

  • 10

    Kojaku, S., Hébert-Dufresne, L., Mones, E., Lehmann, S., & Ahn, Y. Y. (2021) The effectiveness of backward contact tracing in networks. Nature Physics, 17. pp. 652–658. https://doi.org/10.1038/s41567-021-01187-2

  • 11

    Kretzschmar, M. E., Rozhnova, G., Bootsma, M. C. J., van Boven, M., van de Wijgert, J. H. H. M., & Bonten, M. J. M. (2020) Impact of delays on effectiveness of contact tracing strategies for COVID-19: a modelling study. The Lancet Public Health, Vol. 5. No. 8. pp. e452–e459. https://doi.org/10.1016/S2468-2667(20)30157-2

  • 12

    KSH (2021) Magyarország helységnévtára. https://www.ksh.hu/apps/hntr.egyeb?p_lang=HU&p_sablon=LETOLTES [Letöltve: 2021. 05. 06.]

  • 13

    Kwok, K. O., Tang, A., Wei, V. W. I., Park, W. H., Yeoh, E. K., & Riley, S. (2019) Epidemic Models of Contact Tracing: Systematic Review of Transmission Studies of Severe Acute Respiratory Syndrome and Middle East Respiratory Syndrome. Computational and Structural Biotechnology Journal, Vol. 17. pp. 186–194. https://doi.org/10.1016/j.csbj.2019.01.003

  • 14

    MASZK (2021) https://covid.sed.hu/tabs/response [Letöltve: 2021. 05. 06.]

  • 15

    Mooney, G. (2020). “A Menace to the Public Health” — Contact Tracing and the Limits of Persuasion. New England Journal of Medicine, Vol. 383. No. 19. No. 1806–1808. https://doi.org/10.1056/NEJMp2021887

  • 16

    MTA Nyelvtudományi Intézet (2021) Az MTA Nyelvtudományi Intézete által anyakönyvi bejegyzésre alkalmasnak minősített utónevek jegyzéke. http://www.nytud.hu/oszt/nyelvmuvelo/utonevek/ [Letöltve: 2021. 05. 06.]

  • 17

    Okazaki, N., & Tsujii, J. (2010) Simple and efficient algorithm for approximate dictionary matching. Coling 2010 - 23rd International Conference on Computational Linguistics, Proceedings of the Conference, Vol. 2, 851–859.

  • 18

    SQLite Database (2021) https://www.sqlite.org/index.html [Letöltve: 2021. 05. 06.]

  • 19

    WHO Ebola Response Team (2014) Ebola Virus Disease in West Africa — The First 9 Months of the Epidemic and Forward Projections. New England Journal of Medicine, Vol. 371. No. 16. pp. 1481–1495. https://doi.org/10.1056/nejmoa1411100

  • 20

    World Health Organization (2014) Contact Tracing During an Outbreak of Ebola Virus Disease. http://www.who.int/csr/resources/publications/ebola/contact-tracing-during-outbreak-of-ebola.pdf

The author instructions are available in separate PDFs.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.
 

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

2020  
CrossRef Documents 13
CrossRef Cites 0
CrossRef H-index 0
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance Rate 36%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Publication
Programme
2020 Volume 1
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN ISSN 2732-2688

Editor-in-Chief:

  • Tamás NÉMETH 
    (Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research
    Budapest, Hungary)

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Melinda KOVÁCS (Szent István University Kaposvár Campus)Á
  • Miklós MARÓTH (Eötvös Loránd Research Network)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • József HALLER (University of Public Service)
  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (National Research, Development and Innovation Office)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • András KOLTAY (University of Public Service)
  • Gábor KOVÁCS (University of Public Service)
  • József PALLO (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)
  • János JÓZSA (Budapest University of Technology and Economics)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)