View More View Less
  • 1 Budapesti Műszaki és Gazdaságtudományi Egyetem, Energetikai Gépek és Rendszerek Tanszék, , Budapest, Magyarország; Budapest University of Technology and Economics, Department of Energy Engineering, , Budapest, Hungary
Open access

Összefoglaló. A dolgozat témája a különböző erőműfajták életciklusra vonatkozó fajlagos anyagigényének a vizsgálata. Az elemzések a nemzetközi szakirodalmi források felhasználásával történtek. Módszere, a bázisadatok elemzése, majd az anyagigényeknek az erőmű beépített teljesítményére és az életciklus alatt megtermelt villamosenergiára vonatkoztatott fajlagos értékek meghatározása. Az eredmények azt mutatják, hogy a nap- és szélerőművek elterjedésével a hagyományos erőművek által felhasznált fosszilis energiaforrások (pl. a szén) bent maradnak ugyan a földben, de cserébe az új technológia legyártásához a hagyományos anyagokból (beton, acél, alumínium, réz stb.) fajlagosan jóval nagyobb mennyiségekre lesz szükség. Emellett megnő a ritkán előforduló fémek (gallium, indium stb.) felhasználása, ami Európában, a lelőhelyek hiányában, új kockázatokkal jár.

Summary. The topic of the study is to determine the material use of different power plant types. This is a part of the known life cycle analysis (LCA). The aim of LCA is to determine the impact of human activity on nature. The procedure is described in the standards (ISO 14040/41/42/42). Under environmental impact we mean changes in our natural environment, air, water, soil pollution, noise and impacts on human health. In the LCA, the environmental impact begins with the opening of the mine, continues with the extraction and processing of raw materials, and then with the production of equipment, construction and installation of the power plant. This is followed by the commissioning and then operation of the power plants for 20-60 years, including maintenance. The cycle ends with demolition, which is followed by recycling of materials. The remaining waste is disposed of. This is the complex content of life cycle analysis. Its purpose is to determine the ecological footprint of man.

The method of the present study is to isolate a limited area from the complex LCA process. This means determining the amount of material needed to build different power plants, excluding mining and processing of raw materials. Commercially available basic materials are built into the power plant’s components.

The research is based on the literature available in the international area. The author studied these sources, analysed the data, and checked the authenticity. It was not easy because the sources from different times, for different power plants showed a lot of uncertainty. In overcoming the uncertainties, it was a help that the author has decades of experience in the realisation of power plants. It was considered the material consumption related to the installed electricity capacity of the power plant (tons/MW) as basic data.

The author then determined the specific material consumptions, allocated to the electric energy generated during the lifetime, in different power plants.

The calculation is carried out with the help of the usual annual peak load duration hours and the usual lifetime of the power plants.

The results show that with the spread of solar and wind energy, the fossil energy sources previously needed for conventional power plants will remain inside the Earth, but in exchange for the production of new technological equipment from traditional structural materials (concrete, steel, aluminium, copper and plastic), the special need multiplies. If we compare the power plants using renewable energy with the electric energy produced during the life cycle of a nuclear power plant, the specific installed material requirement of a river hydropower plant is 37 times, that of an onshore wind farm it is 9.6 times, and that of an outdoor solar power park is 6.6 times higher.

Another important difference is that wind turbines, solar panels and batteries also require rare materials that do not occur in Europe (e.g. gallium, indium, yttrium, neodymium, cobalt, etc.). This can lead to security risks in Europe in the long run.

  • 1

    Blengini, G., Latunussa, C., Eynard, U., de Matos, C., Wittmer, D., Georgitzikis … Pennington. D. (2020): Study on the EU’s list of Critical Raw Materials. Final Report. Luxembourg: Publications Office of the European Union. p. 153.

  • 2

    Briem, S., at al., dreizehn Autoren (2005): Lebenszyklusanalysen ausgewählter zukünftiger Stromerzeugungstechniken. München: Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung (IER); Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik; Ruhr-Universität Bochum, Lehrstuhl für Energiesysteme und Energiewirtschaft (LEE); Forschungsstelle für Energiewirtschaft (FfE), p. 341.

  • 3

    Carrara, S., Alves Dias, P., Plazzotta, B., & Pavel, C. (2020): Raw materials demand for wind and solar PV technologies in the transition towards a decarbonised energy system. Luxembourg: Publications Office of the European Union, p. 68.

  • 4

    Marheineke, T. (2002): Lebenszyklusanalyse fossiler, nuklearer und regenerativer Stromerzeugung. Forschungsbericht. Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung (IER), pp. 194–224.

  • 5

    Mayer-Spohn, O., Wissel, S., Voß, A., Fahl, U., & Blesl, M. (2005, 2007): Lebenszyklusanalyse ausgewählter Stromerzeugungstechniken. Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung (IER), p. 9.

  • 6

    Muteri, V., & Curto, D. (2020): Review on Life Cycle Assesment of Solar Photovoltaic Panels. https://www.researchgate.net/publication/338384189_Review_on_Life_Cycle_Assessment_of_Solar_Photovoltaic_Panels, p. 39

  • 7

    Smoucha, E., Fitzpatrick, K., Buckingham, S., & Konox, O. (2016): Life Cycle Analysis of the Embodied Carbon Emissions from 14 Wind Turbines with Rated Powers between 50 kW and 3,4 MW. Edinburg University, UK, Scotland’s Rural College, UK, University of New England, Australia. Journal of Fundamentals of Renewable Energy and Application, Vol. 6. No. 4. p. 10. .

    • Crossref
    • Export Citation
  • 8

    Wetzel, M. (2015): Materialbedarf von Stromerzeugungssystemen - Szenarienpfadanalyse für Deutschland. Forschungsarbeit. Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung (IER); Deutsches Zentrum für Luft- und Raumfahrt Institut für Technische Thermodynamik, pp. 1–99.

  • 9

    Wetzel, M. (2016): Materialbilanzen und Auswirkungen von Materialverfügbarkeit auf europäische Energieszenarien unter Berücksichtigung von Importen regelbaren Solarstroms. Universität Stuttgart, Institut für Energiewirtschaft und Rationelle Energieanwendung (IER); Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Technische Thermodynamik, p. 99.

The author instructions are available in separate PDFs.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.
 

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

2020  
CrossRef Documents 13
CrossRef Cites 0
CrossRef H-index 0
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance Rate 36%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN ISSN 2732-2688

Editor-in-Chief:

  • Tamás NÉMETH 
    (Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research
    Budapest, Hungary)

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Melinda KOVÁCS (Szent István University Kaposvár Campus)Á
  • Miklós MARÓTH (Eötvös Loránd Research Network)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • József HALLER (University of Public Service)
  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (National Research, Development and Innovation Office)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • András KOLTAY (University of Public Service)
  • Gábor KOVÁCS (University of Public Service)
  • József PALLO (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)
  • János JÓZSA (Budapest University of Technology and Economics)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 69 52
Nov 2021 0 97 84
Dec 2021 0 57 25
Jan 2022 0 154 40
Feb 2022 0 0 0