Összefoglaló. A villamosenergia-rendszerek fizikai támadásokkal szembeni ellenálló képessége a közelmúltban világszerte történt események ismeretében egyre nagyobb hangsúlyt kap a tématerület kutatásaiban. Az ilyen eseményekre való megfelelő felkészüléshez elengedhetetlen az üzemeltetett infrastruktúrának, elsősorban annak gyengeségeinek pontos ismerete. A cikkben Magyarország villamosenergia-hálózatának adatai alapján készített súlyozatlan és súlyozott gráfokon végzünk vizsgálatokat, hogy megértsük a különböző stratégia mentén kiválasztott célpontok elleni támadások milyen mértékben csökkentik a topológiai hatékonyságot. A cikk célja egyben a magyar hálózat sérülékenységének általános bemutatása is, mely hasznos bemeneti információ lehet a kockázati tervek elkészítésekor.
Summary. Tolerance of the power grid against physical intrusions has gained importance in the light of various attacks that have taken place around the world. To adequately prepare for such events, grid operators have to possess a deep understanding of their infrastructure, more specifically, of its weaknesses. A graph representation of the Hungarian power grid was created in a way that the vertices are generators, transformers, and substations and the edges are high-voltage transmission lines. All transmission and sub-transmission elements were considered, including the 132 kV network as well. The network is subjected to various types of single and double element attacks, objects of which are selected according to different aspects. The vulnerability of the network is measured as a relative drop in efficiency when a vertex or an edge is removed from the network. Efficiency is a measure of the network’s performance, assuming that the efficiency for transmitting electricity between vertices i and j is proportional to the reciprocal of their distance. In this paper, simultaneous removals were considered, arranged into two scenarios (single or double element removal) and a total of 5 cases were carried out (single vertex removal, single edge removal, double vertex removal, double edge removal, single vertex and single edge removal). During the examinations, all possible removal combinations were simulated, thus the 5 cases represent 385, 504, 73920, 128271 and 193797 runs, respectively. After all runs were performed, damage values were determined for random and targeted attacks, and attacks causing maximal damage were also identified. In all cases, damage was calculated for unweighted and weighted networks as well, to enable the comparison of those two models. The aims of this paper are threefold: to perform a general assessment on the vulnerability of the Hungarian power grid against random and targeted attacks; to compare the damage caused by different attack strategies; and to highlight the differences between using unweighted and weighted graphs representations. Random removal of a single vertex or a single edge caused 0.3–0.4% drop in efficiency, respectively, which indicates a high tolerance against such attacks. Damage for random double attacks was still only in the range of 0.6–0.8%, which is acceptable. It was shown that if targets are selected by the attacker based on the betweenness rank of the element, damage would be below the maximal possible values. Comparison of the damage measured in the unweighted and the weighted network representations has shown that damage to the weighted network tends to be bigger for vertex attacks, but the contrary is observed for edge attacks. Numerical differences between the two representations do not show any trend that could be generalised, but in the case of the most vulnerable elements significant differences were found in damage measures, which underlines the importance of using weighted models.
Albert, R., Albert, I., & Nakarado, G. L. (2004) Structural vulnerability of the North American power grid. Physical Review E, Vol. 69. No. 2. https://link.aps.org/doi/10.1103/PhysRevE.69.025103
Arianos, S., Bompard, E., Carbone, A., & Xue, F. (2009) Power grid vulnerability: A complex network approach. Chaos: An Interdisciplianry Journal of Nonlinear Science, Vol. 19. No. 1. https://doi.org/10.1063/1.3077229
Aziz, T., Lin, Z., Waseem, M., & Liu, S. (2020) Review on optimization methodologies in transmission network reconfiguration of power systems for grid resilience. International Transactions on Electrical Energy Systems, Vol. 31. No. 3. https://doi.org/10.1002/2050-7038.12704
Beyza, J., Garcia-Paricio, E., Ruiz, H. F., & Yusta, J. M. (2020) Geodesic Vulnerability Approach for Identification of Critical Buses in Power Systems. Journal of Modern Power Systems and Clean Energy, Vol. 8. pp. 727–736. https://doi.org/10.35833/MPCE.2018.000779
Bompard, E., Napoli, R., & Xue, F. (2009) Analysis of structural vulnerabilities in power transmission grids. International Journal of Critical Infrastructure Protection, Vol. 2., No. 1–2. pp. 5–12. https://doi.org/10.1016/j.ijcip.2009.02.002
Bompard, E., Wu, D., & Xue, F. (2010) The concept of betweenness in the analysis of power grid vulnerability. Proc. Complexity in Engineering, 2010 (COMPENG’10), Rome, Italy, 22–24 February 2010, pp. 52–54. https://doi.org/10.1109/COMPENG.2010.10
Brummitt, C. D., D’Souza, R. M., & Leicht, R. (2012) Suppressing cascades of load in interdependent networks. Proceedings of the National Acemy of the United States of America, Vol. 109. No. 12. E680–E689, https://doi.org/10.1073/pnas.1110586109
Chassin, D. P., & Posse, C. (2005) Evaluating North American electric grid reliability using the Barabási–Albert network model. Physica A, Vol. 355. No. 2–4. pp. 667–677. https://doi.org/10.1016/j.physa.2005.02.051
Chen, Z., Zhu, J., Li, S., & Luo, T. (2020) Detection of False Data Injection Attack in Automatic Generation Control System with Wind Energy based on Fuzzy Support Vector Machine. Proc. IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 2020, pp. 3523–3528. https://doi.org/10.1109/IECON43393.2020.9255020
Crucitti, P., Latora, V., & Marchiori, M. (2004a) A topological analysis of the Italian electric power grid. Physica A, Vol. 338. No. 1–2. pp. 92–97. https://doi.org/10.1016/j.physa.2004.02.029
Crucitti, P., Latora, V., & Marchiori, M. (2004b) Model for cascading failures in complex networks. Physical Review E, Vol. 69. No. 4. https://link.aps.org/doi/10.1103/PhysRevE.69.045104
Crucitti, P., Latora, V., Marchiori, M. (2005) Locating critical lines in high-voltage electrical power grids. Fluctuation and Noise Letters, Vol. 5. No. 2. L201–L208, https://doi.org/10.1142/S0219477505002562
Cuadra, L., Salcedo-Sanz, S., Ser, J., Jiménez-Fernández, S., & Geem, Z. W. (2015) A Critical Review of Robustness in Power Grids Using Complex Networks Concepts. Energies, Vol. 8. No. 9. pp. 9211–9265. https://doi.org/10.3390/en8099211
Dwivedi, A., Yu, X., & Sokolowski, P. (2009) Identifying vulnerable lines in a power network using complex network theory. Proc. IEEE International Symposium on Industrial Electronics (ISIE 2009), Seoul, Korea, 5–8 July 2009, pp. 18–23. https://doi.org/10.1109/ISIE.2009.5214082
Dwivedi, A., Yu, X., & Sokolowski, P. (2010) Analyzing power network vulnerability with maximum flow based centrality approach. Proc. 8th IEEE International Conference on Industrial Informatics (INDIN), Osaka, Japan, 1–16 July 2010, pp. 336–341. https://doi.org/10.1109/INDIN.2010.5549398
Edib, S. N., Lin, Y., Vokkarane, V., Qiu, F., Yao, R., & Zhao, D. (2020) PMU and Communication Infrastructure Restoration for Post-Attack Observability Recovery of Power Grids. Proc. 2020 IEEE International Conference on Communications, Control, and Computing Technologies for Smart Grids (SmartGridComm), Tempe, AZ, USA, 2020, pp. 1–6. https://doi.org/10.1109/SmartGridComm47815.2020.9303014
Európai Parlament és Tanács (2019) Az Európai Parlament és a Tanács (EU) 2019/941 rendelete (2019. június 5.) a villamosenergia-ágazati kockázatokra való felkészülésről és a 2005/89/EK irányelv hatályon kívül helyezéséről
Európai Unió (2017) A Bizottság (EU) 2017/1485 rendelete (2017. augusztus 2.) a villamosenergia-átviteli hálózat üzemeltetésére vonatkozó iránymutatás megalkotásáról.
Fang, J., Wu, J., Zheng, Z., & Tse, C. K. (2021) Revealing Structural and Functional Vulnerability of Power Grids to Cascading Failures. IEEE Journal on Emergingand Selected Topics in Cirtuits and Systems, Vol. 11. No. 1. pp. 133–143. https://doi.org/10.1109/JETCAS.2020.3033066
Fronczak, A., Fronczak, P., & Hołyst, J. A. (2004) Average path length in random networks. Physical Review E, Vol. 70. No. 5. https://link.aps.org/doi/10.1103/PhysRevE.70.056110
Galindo-González, C. C., Angulo-Garcia, D., & Osorio, G. (2020) Decreased resilience in power grids under dynamically induced vulnerabilities. New Journal of Physics, Vol. 22. https://doi.org/10.1088/1367-2630/abb962
Gao, X., Pu, C., & Li, L. (2020) Vulnerability assessment of power grids against cost-constrained hybrid attacks. IEEE Transactions on Circuits and Systems II, Vol. 68. No. 4. pp. 1477–1481. https://doi.org/10.1109/TCSII.2020.3033545
Ghafouri, M., Au, M., Kassouf, M., Debbabi, M., Assi, C., & Yan, J. (2020) Detection and Mitigation of Cyber Attacks on Voltage Stability Monitoring of Smart Grids. IEEE Transactions on Smart Grid, Vol. 11. No. 6. pp. 5227–5238. https://doi.org/10.1109/TSG.2020.3004303
Gouhua, Z., Ce, W., Jianhua, Z., Jingyan, Y., Yin, Z., & Manyin, D. (2008) Vulnerability assessment of bulk power grid based on complex network theory. Proc. Third International Conference on Electric Utility Deregulation and Restructuring and Power Technologies (DRPT 2008), Nanjuing, China, 6–9 April 2008, pp. 1554–1558. https://doi.org/10.1109/DRPT.2008.4523652
Han, P., & Zhang, S. (2011) Analysis of cascading failures in small-world power grid. International Journal of Energy Science, Vol. 1. No. 2. pp. 99–104.
He, Z., Jiang, F., Qian, F., Li, F., Yuan, X., Sang, Z., & Xie, Y. (2020) Defense Resources Optimization for AC-DC Hybrid System Against the Coordination Attack of False Data Injection Attack and Physical Attack. Proc. 2020 IEEE/IAS Industrial and Commercial Power System Asia (I&CPS Asia), Weihai, China, 2020, pp. 657–662. https://doi.org/10.1109/ICPSAsia48933.2020.9208447
Hines, P., Blumsack, S., Sanchez, E. C., & Barrows, C. (2010) The topological and electrical structure of power grids. Proc. 43th Hawaii International Conference on System Sciences (HICSS), Honolulu, HI, USA, 5–8 January 2010, pp. 1–10. https://doi.org/10.1109/HICSS.2010.398
Holmgren, Å. J. (2006) Using graph models to analyze the vulnerability of electric power networks. Risk Analysis, Vol. 26. No. 4. pp. 955–969. https://doi.org/10.1111/j.1539-6924.2006.00791.x
Holmgren, Å. J., Jenelius, A., & Westin, J. (2007) Evaluating strategies for defending electric power networks against antagonistic attacks. IEEE Transactions on Power Systems, Vol. 22. No. 1. pp. 76–84. https://doi.org/10.1109/TPWRS.2006.889080
Jin, M., Lavaei, J., Sojoudi, S., & Baldick, R. (2021) Boundary Defense Against Cyber Threat for Power System State Estimation. IEEE Transactions on Information Forensics and Security, Vol. 16., pp. 1752–1767. https://doi.org/10.1109/TIFS.2020.3043065
Khare, G., Mohapatra, A., & Singh, S. N. (2021) A Real-Time Approach for Detection and Correction of False Data in PMU Measurements. Electric Power Systems Research, Vol. 191. https://doi.org/10.1016/j.epsr.2020.106866
Kinney, R., Crucitti, P., Albert, R., & Latora, V. (2005) Modeling cascading failures in the North American power grid. The European Physical Journal B, Vol. 46., pp. 101–107. https://doi.org/10.1140/epjb/e2005-00237-9
Lesieutre, B., Borden, A., & Ramanathan, P. (2020) Preserving Confidentiality of Critical Energy Infrastructure Information. Principles of Cyber-Physical Systems: An Interdisciplinary Approach. Cambridge University Press. https://doi.org/10.1017/9781107588981
Liu, Z., & Wang, L. (2021) Leveraging Network Topology Optimization to Strengthen Power Grid Resilience Against Cyber-Physical Attacks. IEEE Transactions on Smart Grid, Vol. 12. No. 2. pp. 1552–1564. https://doi.org/10.1109/TSG.2020.3028123
Long, X., & Chen, C. (2020) Study on the Vulnerability of Power Grid Cascade Failures Based on Complex Network Theory. In: Jia Y., Zhang W., Fu Y. (eds) Proceedings of 2020 Chinese Intelligent Systems Conference. CISC 2020. Lecture Notes in Electrical Engineering, Vol. 706., pp. 307–315. https://doi.org/10.1007/978-981-15-8458-9_33
Mei, S., Zhang, X., & Cao, M. (2011a) Complex Small-World Power Grids. Power Grid Complexity, pp. 161–178. https://doi.org/10.1007/978-3-642-16211-4_5
Mei, S., Zhang, X., & Cao, M. (2011b) Power grid growth and evolution. Power Grid Complexity, pp. 133–160. https://doi.org/10.1007/978-3-642-16211-4_4
Pace, G. D., Wang, Z., Benin, J., He, H., & Sun, Y. (2020) Evaluation of Communication Delay Based Attack Against the Smart Grid. Proc. 2020 IEEE Kansas Power and Energy Conference (KPEC), Manhattan, KS, USA, 2020, pp. 1–6. https://doi.org/10.1109/KPEC47870.2020.9167543
Pagani, G. A., & Aiello, M. (2011) Towards decentralization: A topological investigation of the medium and low voltage grids. IEEE Transactions on Smart Grid, Vol. 2. No. 3. pp. 538–547. https://doi.org/10.1109/TSG.2011.2147810
Pahwa, S., Hodges, A., Scoglio, C., & Wood, S. (2010) Topological analysis of the power grid and mitigation strategies against cascading failures. Proc. 4th Annual IEEE Systems Conference, San Diego, CA, USA, 5–8 April 2010, pp. 272–276. https://doi.org/10.1109/SYSTEMS.2010.5482329
Panigrahi, P., & Maity, S. (2020) Structural vulnerability analysis in small-world power grid networks based on weighted topological model. International Transactions on Electrical Energy Systems, Vol. 30. No. 7. e12401, https://doi.org/10.1002/2050-7038.12401
Pepyne, D. L. (2007) Topology and cascading line outages in power grids. Journal of Systems Science and Systems Engineering, Vol. 16. pp. 202–221. https://doi.org/10.1007/s11518-007-5044-8
Rajkumar, V. S., Tealane, M., Ştefanov, A., Presekal, A., & Palensky, P. (2020) Cyber Attacks on Power System Automation and Protection and Impact Analysis. Proc. 2020 IEEE PES Innovative Smart Grid Technologies Europe (ISGT-Europe), The Hague, Netherlands, pp. 247–254. https://doi.org/10.1109/ISGT-Europe47291.2020.9248840
Rosas-Casals, M., Bologna, S., Bompard, E., D’Agostino, G., Ellens, W., Pagani, G.A, Scala, A, & Verma, T. (2015) Knowing power grids and understanding complexity science. International Journal of Critical Infrastructures, Vol. 11. No. 1. pp. 4–14. https://dx.doi.org/10.1504/IJCIS.2015.067399
Rosas-Casals, M., Valverde, S., & Solé, R. V. (2007) Topological vulnerability of the European power grid under errors and attacks. International Journal of Bifurcation and Chaos, Vol. 17. No. 7. pp. 2465–2475. https://doi.org/10.1142/S0218127407018531
Rosato, V., Bologna, S., & Tiriticco, F. (2007) Topological properties of high-voltage electrical transmission networks. Electric Power Systems Research, Vol. 77. No. 2. pp. 99–105. https://doi.org/10.1016/j.epsr.2005.05.013
Saraswat, G., Rui, Y., Yajing, L., & Yingchen Z. (2020) Analyzing the Effects of Cyberattacks on Distribution System State Estimation: Preprint, United States: N. p., 2020. Web. https://www.osti.gov/biblio/1737538
Sharma, D., Lin, C., Luo, X., Wu., D., Thulasiraman, K., & Jiang, J.N. (2020) Advanced techniques of power system restoration and practical applications in transmission grids. Electric Power Systems Research, Vol. 182., 106238, https://doi.org/10.1016/j.epsr.2020.106238
Shen, M., Gao, X., & Peng, M. (2020) Effects of Malware Attacks on the Cascading Failure of Cyber-physical Power System. Journal of Physics, Conference Series, 1624, 062005, https://doi.org/10.1088/1742-6596/1624/6/062005
Sičanica, Z., & Vujaklija, I. (2020) Resilience to cascading failures. A complex network approach for analysing the Croatian power grid. Proc. 2020 43rd International Convention on Information, Communication and Electronic Technology (MIPRO), Opatija, Croatia, 2020, pp. 918–922. https://doi.org/10.23919/MIPRO48935.2020.9245160
Singh, N. K., & Mahajan, V. (2020) Analysis and Evaluation of Cyber-attack Impact on Critical Power System Infrastructure. Smart Science, Vol. 9. pp. 1–13. https://doi.org/10.1080/23080477.2020.1861502
Solé, R. V., Rosas-Casals, M., Corominas-Murtra, B., & Valverde, S. (2008) Robustness of the European power grids under intentional attack. Physical Review E, Vol. 77. No. 2. 026102, https://link.aps.org/doi/10.1103/PhysRevE.77.026102
Tu, H., Shen, H-L., & Xia, Y. (2020) Cascading Failures of Power System with the Consideration of Cyber Attacks. Proc. 2020 IEEE International Symposium on Circuits and Systems (ISCAS), Sevilla, pp. 1–4. https://doi.org/10.1109/ISCAS45731.2020.9180816
Wang, G., Kong, X., Zhu, C., Xu, J., & Cao, Y. (2010) Identification of key lines in complex power grid based on power flow entropy. Proc. 2010 China International Conference on Electricity Distribution (CICED), Nanjing, China, 13–16 September 2010, pp. 1–6.
Wang, J. W., & Rong, L. L. (2009) Cascade-based attack vulnerability on the US power grid. Safety Science, Vol. 47. No. 10. pp. 1332–1336. https://doi.org/10.1016/j.ssci.2009.02.002
Wang, W., Song, Y., Li, Y., & Jia, Y. (2020) Research on Cascading Failures Model of Power Grid Based on Complex Network. Proc. 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 2020, pp. 1367–1372. https://doi.org/10.1109/CCDC49329.2020.9164048
Wang, Z., Scaglione, A., & Thomas, R. J. (2010) The node degree distribution in power grid and its topology robustness under random and selective node removals. Proc. 2010 IEEE International Conference on Communications Workshops (ICC), Capetown, South Africa, 23–27 May 2010, pp. 1–5. https://doi.org/10.1109/ICCW.2010.5503926
Watts, D., & Strogatz, S. (1998) Collective dynamics of ‘small-world’ networks. Nature, Vol. 393. pp. 440–442. https://doi.org/10.1038/30918
Wu, Y., Chen, J., Ru, Y., Xu, H., Roger, M., & Ni, M. (2020) Research on Power Communication Network Planning Based on Information Transmission Reachability Against Cyber-Attacks. IEEE Systems Journal, Early Access, Vol. 15. No. 2. pp. 2883–2894. https://doi.org/10.1109/JSYST.2020.3026997
Xiong X., Sun, D., Hao, S., Lin, G., & Li, H. (2020) Detection of False Data Injection Attack Based on Improved Distortion Index Method. Proc. 2020 IEEE 20th International Conference on Communication Technology (ICCT), Nanning, China, 2020, pp. 1161–1168. https://doi.org/10.1109/ICCT50939.2020.9295794
Zhou, X., Canady, R., Li, Y., Koutsoukos, X., & Gokhale, A. (2020) Overcoming Stealthy Adversarial Attacks on Power Grid Load Predictions Through Dynamic Data Repair. In: Darema F., Blasch E., Ravela S., Aved A. (eds) Dynamic Data Driven Applications Systems. DDDAS 2020. Lecture Notes in Computer Science, Vol. 12312., Springer, Cham., pp. 102–109. https://doi.org/10.1007/978-3-030-61725-7_14