View More View Less
  • 1 Servier Kutatóintézet ZRt., , Budapest, Magyarország; Servier Research Institute of Medicinal Chemistry, , Budapest, Hungary
Open access

Összefoglaló. A betegségek mögött meghúzódó biokémiai, sejtbiológiai változások molekuláris szintű megértése a korszerű gyógyszerkutatás alapját képezi. A kiválasztott biológiai célpont, leggyakrabban egy fehérje, működésének gátlásától vagy fokozásától azt reméljük, hogy elősegíti a gyógyulást. A hagyományos gyógyszerkutatási megközelítések molekuláris alapját a kiválasztott fehérjével való közvetlen kölcsönhatás jelentette. Ugyanakkor a sejten belüli molekuláris biológiai folyamatok részletesebb megértése több új megközelítést nyitott a gyógyszerkutatás számára. A közlemény ezeket a gyógyszerkutatási irányzatokat mutatja be, külön kitérve biztonságosságukra.

Summary. Human diseases originate from and are accompanied by changes in the biochemistry of cells. The molecular level understanding of these deviations from normal functioning is key to the curing of the diseases, therefore a principal objective of drug discovery. The key-lock principle postulated by Emil Fischer serves well the understanding of most enzymatic processes and has been helping researchers both in academia and industry to discover new drugs. The binding of a small molecule to the target protein and inhibiting or activating its function is the basis for the efficient functioning of a long list of current drugs. Sometimes the desired biological effect comes from the selective action on a single protein, in other instances it is the combined effect on the working of several proteins. The appropriate selectivity profile is key to the safety and efficiency of the drug in both cases.

The completion of the Human Genome Project, in parallel with a significant improvement in the performance of the analytical instrumentation, increased our molecular and systemic level understanding of diseases immensely. Analysis of the differences between healthy and diseased cells and tissues led to the identification of new targets, a lot of which are not classical enzymes but proteins exerting their effect through molecular interactions with other proteins or nucleic acids. Although these proteins were considered undruggable some decades ago, their disease modifying potential led to the discovery of new approaches and modalities to target them. The inhibition of protein-protein interactions, for example, requires the selective targeting of hydrophobic surfaces, sometimes with very high affinity. Drug candidates acting through this molecular mechanism are typically beyond the size of classical drugs that might complicate their development.

Besides interacting directly with the protein of interest we might also impact its working through manipulating its quantity within the cell. Interference with the proteasomal degradation of cellular proteins, blocking its working, or hijacking it to selectively increase the degradation of our protein of choice are promising new modalities that are transitioning from research into clinical practice. Alternatively, one might also interfere with the transcriptional machinery. Selective blocking of the messenger RNA responsible for carrying the sequence information of the targeted protein by using so called antisense oligonucleotides, small interfering RNAs, or micro RNAs can result in a decreased synthesis of the protein. Appropriately designed oligonucleotides can also enhance protein synthesis or lead to an alteration of the sequence to synthesize for a given protein. Finally, we might also target the epigenetic regulatory machinery, which is in charge of unpacking the DNA double helix from its storage form and making it available for transcription. This interference typically leads to a more complex change, the parallel modulation of the level of several proteins at the same time.

  • 1

    Beloglazkina, A., Zyk, N., Majouga, A., & Beloglazkina, E. (2020) Recent Small-Molecule Inhibitors of the p53–MDM2 Protein–Protein Interaction. Molecules, Vol. 25. No. 5. p. 1211. .

    • Crossref
    • Export Citation
  • 2

    Bhat, M., Robichaud, N., Hulea, L., Sonenberg, N., Pelletier, J., & Topisirovic, I. (2015) Targeting the translation machinery in cancer. Nature Reviews Drug Discovery, Vol. 14. pp. 261–278. .

    • Crossref
    • Export Citation
  • 3

    Boland, B., Yu, W. H., Corti, O., Mollereau, B., Henriques, A., Bezard, E., … Millan, M. J. (2018) Promoting the clearance of neurotoxic proteins in neurodegenerative disorders of ageing. Nature Reviews Drug Discovery, Vol. 17. pp. 660–688. .

    • Crossref
    • Export Citation
  • 4

    Cheng, Y., He, C., Wang, M., Ma, X., Mo, F., Yang, S., … Wei, X. (2019) Targeting epigenetic regulators for cancer therapy: mechanisms and advances in clinical trials. Signal Transduction and Targeted Therapy, Vol. 4. Article 62. .

    • Crossref
    • Export Citation
  • 5

    D’Aguanno, S., & Del Bufalo, D. (2020) Inhibition of Anti-Apoptotic Bcl-2 Proteins in Preclinical and Clinical Studies: Current Overview in Cancer. Cells, Vol. 9. No. 5. p. 1287. .

    • Crossref
    • Export Citation
  • 6

    Fischer, E. (1894) Einfluss der Configuration auf die Wirkung der Enzyme. II Berichte der deutschen chemischen Gesellschaft, Vol. 27. No. 3. pp. 3479–3483. .

    • Crossref
    • Export Citation
  • 7

    Kiss B., & Kárpáti E. (1996) Vinpocetin hatásai, hatásmechanizmusa [Mechanism of action of vinpocetine]. Acta Pharmaceutica Hungarica, Vol. 66. pp. 213–224.

  • 8

    Kotschy, A., Szlavik, Z., Murray, J., Davidson, J., Maragno, A. L., Le Toumelin-Braizat, G., … Geneste, O. (2016) MCL1 inhibitor S63845 is tolerable and efficacious in diverse cancer models. Nature, Vol. 538. pp. 477–482. .

    • Crossref
    • Export Citation
  • 9

    Krönke, J., Udeshi, N. D., Narla, A., Grauman, P., Hurst, S. N., McConkey, M., … Ebert, B. L. (2014) Lenalidomide causes selective degradation of IKZF1 and IKZF3 in multiple myeloma cells, Science, Vol. 343. pp. 301–305. .

    • Crossref
    • Export Citation
  • 10

    Laham-Karam, N., Pinto, G. P., Poso, A., & Kokkonen, P. (2020) Transcription and Translation Inhibitors in Cancer Treatment. Frontiers in Chemistry, Vol. 8. Article 276. .

    • Crossref
    • Export Citation
  • 11

    Laszlovszky I., Kiss B., Barabássy Á., Kapás M., & Németh Gy. (2019) Kariprazin, egy új típusú – dopamin D3 receptort preferáló – parciális agonista atípusos antipszichotikum a szkizofrénia és primer negatív tüneteinek kezelésére. Neuropsychopharmacologia Hungarica, Vol. 21. No. 3. pp. 103–118.

  • 12

    Lu, G., Middleton, R. E., Sun, H., Naniong, M. V., Ott, C. J., Mitsiades, C. S., … Kaelin Jr, W. G. (2014) The myeloma drug lenalidomide promotes the cereblon-dependent destruction of Ikaros proteins, Science, Vol. 343. pp. 305–309. .

    • Crossref
    • Export Citation
  • 13

    Marshall, L. J., Austin, C. P., Casey, W., Fitzpatrick, S. C., & Willett, C. (2018) Recommendations toward a human pathway-based approach to disease research. Drug Discovery Today, Vol. 23. No. 11. pp. 1824–1832. .

    • Crossref
    • Export Citation
  • 14

    Martinez-Vicente, M., & Cuervo, A. M. (2007) Autophagy and neurodegeneration: when the cleaning crew goes on strike, Lancet Neurology, Vol. 6. pp. 352–361. .

    • Crossref
    • Export Citation
  • 15

    Mészáros B., Kumar, M., Gibson, T. J., Uyar, B., & Dosztányi Z. (2017) Degrons in cancer. Science Signaling, Vol. 10, eaak9982. .

    • Crossref
    • Export Citation
  • 16

    Mészáros Z., Szentmiklósi P., & Czibula I. (1963) HU150535 számú szabadalmi bejelentés, 1963.09.30.

  • 17

    Moffat, J. G., Vincent, F., Lee, J. A., Eder, J., & Prunotto, M. (2017) Opportunities and challenges in phenotypic drug discovery: an industry perspective. Nature Reviews Drug Discovery, Vol. 16. pp. 531–543. .

    • Crossref
    • Export Citation
  • 18

    Murray, J., Davidson, J., Chen, I., Davis, B., Dokurno, P., Graham, C. J., … Hubbard, R. E. (2019) Establishing Drug Discovery and Identification of Hit Series for the Anti-apoptotic Proteins, Bcl-2 and Mcl-1. ACS Omega, Vol. 4. pp. 8892–8906. .

    • Crossref
    • Export Citation
  • 19

    Paczal, A., Balint, B., Weber, C., Szabo, Z. B., Ondi, L., Theret, I., … Kotschy, A. (2016) Structure-activity relationship of azaindole-based glucokinase activators, Journal of Medicinal Chemistry, Vol. 59. pp. 687–706. .

    • Crossref
    • Export Citation
  • 20

    Paine, M. F. (2017) Therapeutic Disasters That Hastened Safety Testing of New Drugs. Clinical Pharmacology & Therapeutics, Vol. 101. No. 4. pp. 430–434. .

    • Crossref
    • Export Citation
  • 21

    Quemener, A. M., Bachelot, L., Forestier, A., Donnou-Fournet, E., Gilot, D., & Galibert, M.-D. (2020) The powerful world of antisense oligonucleotides: From bench to bedside. WIREs RNA, Vol. 11. e1594. .

    • Crossref
    • Export Citation
  • 22

    Roberts, T. C., Langer, R., & Wood, M. J. A. (2020) Advances in oligonucleotide drug delivery. Nature Reviews Drug Discovery, Vol. 19. pp. 673–694. .

    • Crossref
    • Export Citation
  • 23

    Sagoo, P., & Gaspar, H. B. (2021) The transformative potential of HSC gene therapy as a genetic medicine. Gene Therapy, .

    • Crossref
    • Export Citation
  • 24

    Schapira, M., Calabrese, M. F., Bullock, A. N., & Crews, C. M. (2019) Targeted protein degradation: expanding the toolbox. Nature Reviews Drug Discovery, Vol. 18. pp. 949–963. .

    • Crossref
    • Export Citation
  • 25

    Szlavik, Z., Csekei, M., Paczal, A., Szabo, Z. B., Sipos, S., Radics, G., … Kotschy, A. (2020) Discovery of S64315, a Potent and Selective Mcl-1 Inhibitor. Journal of Medicinal Chemistry, Vol. 63. pp. 13762–13795. .

    • Crossref
    • Export Citation
  • 26

    Szlavik, Z., Ondi, L., Csekei, M., Paczal, A., Szabo, Z. B., Radics, G., … Kotschy, A. (2019) The structure guided discovery of a selective Mcl-1 inhibitor with cellular activity. Journal of Medicinal Chemistry, Vol. 62. pp. 6913–6924. .

    • Crossref
    • Export Citation
  • 27

    Wu, Q., Jiang, L., Li, S.-C., He, Q.-Y., Yang, B., & Cao,. J. (2021) Small molecule inhibitors targeting the PD-1/PD-L1 signaling pathway. Acta Pharmacologia Sinica, Vol. 42. pp. 1–9. .

    • Crossref
    • Export Citation
The author instructions are available in separate PDFs.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.
 

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

2020  
CrossRef Documents 13
CrossRef Cites 0
CrossRef H-index 0
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance Rate 36%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN ISSN 2732-2688

Editor-in-Chief:

  • Tamás NÉMETH 
    (Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research
    Budapest, Hungary)

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Melinda KOVÁCS (Szent István University Kaposvár Campus)Á
  • Miklós MARÓTH (Eötvös Loránd Research Network)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • József HALLER (University of Public Service)
  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (National Research, Development and Innovation Office)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • András KOLTAY (University of Public Service)
  • Gábor KOVÁCS (University of Public Service)
  • József PALLO (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)
  • János JÓZSA (Budapest University of Technology and Economics)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Aug 2021 0 0 0
Sep 2021 0 0 0
Oct 2021 0 36 18
Nov 2021 0 37 15
Dec 2021 0 44 5
Jan 2022 0 27 23
Feb 2022 0 0 0