György Miklós Keserű Gyógyszerkémiai Kutatócsoport, Természettudományi Kutatóközpont, Budapest, Magyarország; Medicinal Chemistry Research Group, Research Centre for Natural Sciences, Budapest, Hungary
Magyar Koronavírus-kutatási Akciócsoport; Hungarian Coronavirus Research Task Force

Search for other papers by György Miklós Keserű in
Current site
Google Scholar
Open access

Összefoglaló. Egészen az ezredfordulóig a gyógyszeripari kutatás-fejlesztés világszerte hagyományosan nagyvállalati keretek között folyt. Az elmúlt évtizedekben azonban ebben a szegmensben jelentős átrendeződések tapasztalhatók, ugyanis a korai kutatási és fejlesztési projektek sok esetben már az egyetemi-akadémiai, illetve kkv-szektorból indulnak. A szervezeti keretek mellett a fejlesztések szakmai tartalma is változott, a hagyományos kismolekulás gyógyszerek mellett egyre meghatározóbb szerep jut a biológiai terápiáknak, valamint a hatóanyagok fejlesztése mára összekapcsolódott a releváns diagnosztikumok fejlesztésével. A projektek finanszírozásában is fontos változások történtek, egyre jelentősebb szerep jut az állami KFI finanszírozásnak és a (kockázati) tőkebefektetéseknek. A gyógyszeripari K+F szakmai, szervezeti és finanszírozási kereteinek változása jelentősen felértékelte és szélesítette a korábban is meglévő akadémiai-ipari kapcsolatokat. Az együttműködések fontos szerepet játszanak a COVID–19 járványra adott válaszokban is, amit a magyar egyetemek, kutatóintézetek, kis- és középvállalatok, valamint gyógyszeripari nagyvállalatok részvételével indult kutatások igazolnak.

Summary. Until the turn of the millennium, pharmaceutical research and development worldwide had traditionally taken place in pharmaceutical companies. In recent decades, however, significant rearrangements have been witnessed, as early-stage research and development projects often start at the universities or the academic and SME sectors. In addition to the organizational framework, the professional content has also changed: in addition to traditional small molecule drugs, biological therapies are playing an increasingly important role, and the development of active ingredients is now linked to the development of relevant diagnostics. Important changes have also taken place in the financing of projects, with public RDI financing and (venture) capital investments playing an increasing role. Changes in the professional, organizational and funding frameworks for pharmaceutical R&D have significantly enhanced and broadened existing academic-industrial relations. Collaborations also play an important role in the responses to the COVID-19 epidemic, as evidenced by research involving Hungarian universities, research institutes, small and medium-sized enterprises, and large pharmaceutical companies. The first example is a collaboration of an academic research group and a spin-off company formed from this environment. Researchers of the Eötvös University (ELTE) and others working at the Research Centre for Natural Sciences (RCNS) applied phage display technology to discover new protease inhibitors. They established EvolVeritas Ltd, a spin-off company developing high affinity and high specificity inhibitors of the TMPRSS2 protease that is involved in the SARS-CoV-2 viral entry to host cells. In a parallel research program, the same consortium is working on new inhibitors of the MASP2 protease contributing to the coronavirus mediated activation of innate immunity, particularly the complement system. This latter approach would result in the effective control of microthrombosis events associated with serious COVID-19 infections. Both of the approaches are in the early preclinical phase and further investment would be needed to push these projects into clinical testing. The second example is a collaboration between an academic research group and an SME to reposition of azelastine, an approved antihistamine drug that was found to be effective in blocking SARS-CoV-2 mediated pathogenesis. After successful preclinical studies, the partners have now initiated clinical trials to demonstrate the efficacy of azelastine nasal drops in the prevention and treatment of COVID-19 infections. The third example is a collaboration of academic research groups, a SME and a pharmaceutical company. This consortium develops an antibody-like fusion protein therapeutics that can neutralize the SARS-CoV-2 virus. One component of the ACE2-Fc fusion protein is the relevant portion of angiotensin-converting enzyme 2 (ACE2) produced by recombinant technologies, which binds to the spike protein of the pathogen. The virus thus binds to the fusion protein instead of the ACE2 receptors in human cells. Another component is responsible for the long half-life of IgG, the so-called Fc region. The consortium confirmed that the ACE2-Fc fusion protein inhibits SARS-CoV-2 infection in cell culture, and prevents disease in experimental animals. Preclinical development and the preparation of the core documentation is ongoing, which will soon be submitted to the European Medicines Agency (EMA) to initiate clinical trials. The final example is a joint development project that involved a research group, an SME and two pharmaceutical companies. The objective of this program is process development and pharmaceutical formulation of favipiravir, a broad-spectrum antiviral with a treatment potential against COVID-19. The consortium completed the process development of the active pharmaceutical ingredient (API) and developed finished dosage formulations available for clinical testing. Clinical trials are ongoing that aim investigating safety and efficacy of favipiravir in COVID-19 infected patients. All of the examples described here demonstrate the power of collaborations that helped the participants to give diverse and effective responses to the unprecedented pandemic challenge of COVID-19. We believe that these experiences would encourage the members of the academic and industry community to formulate further collaborations to tackle the unmet medical need in our societies.

  • 1

    Furuta, Y., Komeno, T., & Nakamura, T. (2017) Favipiravir (T-705), a broad spectrum inhibitor of viral RNA polymerase. Proceedings of the Japan Academy. Series B, Physical and biological sciences, Vol. 93. No. 7. pp. 449–463.

  • 2

    Guy, R. K., DiPaola, R. S., Romanelli, F., & Dutch, R. E. (2020) Rapid repurposing of drugs for COVID-19. Science (New York, N.Y.) Vol. 368. No. 6493. pp. 829–830.

  • 3

    Hoffmann, M., Kleine-Weber, H., Schroeder, S., Krüger, N., Herrler, T., Erichsen, S., Schiergens T. S., Herrler, G., Wu, N.-H., Nitsche, A., & Müller, M. A. (2020) SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor. Cell, Vol. 181. No. 2. pp. 271–280.

  • 4

    Khanna, I. (2012) Drug discovery in pharmaceutical industry: productivity challenges and trends. Drug Discov Today, Vol. 17. No. 19–20. pp. 1088–1102.

  • 5

    Kneller, R. (2010) The importance of new companies for drug discovery: origins of a decade of new drugs. Nat Rev Drug Discov. Vol. 9. No. 11. pp. 867–882.

  • 6

    Konrat, R., Papp, H., Szijártó, V., Gesell, T., Nagy, G., Madai, M., ... Nagy, E. (2020) The Anti-histamine Azelastine, Identified by Computational Drug Repurposing, Inhibits SARS-CoV-2 Infection in Reconstituted Human Nasal Tissue In Vitro. bioRxiv. (This article is a preprint and has not been certified by peer review)

  • 7

    Lei, C., Qian, K., Li, T., Zhang, S., Fu, W., Ding, M., & Hu, S. (2020) Neutralization of SARS-CoV-2 spike pseudotyped virus by recombinant ACE2-Ig. Nature Communications, 11, Article no. 2070.

  • 8

    Lincker, H., Ziogas, C., Carr, M., Porta, N., Eichler, H.-G. (2014) Regulatory watch: where do new medicines originate from in the EU? Nat Rev Drug Discov. Vol. 13. No. 2. pp. 92–93.

  • 9

    Mullard, A. (2018) FDA drug approvals. Nat Rev Drug Discov. Vol. 18. No. 2. 85–89.

  • 10

    Patridge, E. V., Gareiss, P. C., Kinch, M. S., Hoyer, D. W. (2015) An analysis of original research contributions toward FDA-approved drugs. Drug Discov Today, Vol. 20. No. 10. pp. 1182–1187.

  • 11

    Schuhmacher, A., Gassmann, O., Hinder, M. (2016) Changing R&D models in research-based pharmaceutical companies. J Transl Med. Vol. 14. Article no. 105.

  • Collapse
  • Expand
The author instructions are available in PDF.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.



Founding Editor-in-Chief:

  • Tamás NÉMETH

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (University of Pannonia)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)
  • Gergely DELI (University of Public Service)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • József HALLER (University of Public Service)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • János JÓZSA (Budapest University of Technology and Economics)
  • András KOLTAY (National Media and Infocommunications Authority)
  • Gábor KOVÁCS (University of Public Service)
  • Levente KOVÁCS buda University)
  • Melinda KOVÁCS (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós MARÓTH (Avicenna Institue of Middle Eastern Studies )
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • József PALLO (University of Public Service)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906


CrossRef Documents 32
CrossRef Cites 15
Days from submission to acceptance 59
Days from acceptance to publication 104
Acceptance Rate 81%

CrossRef Documents 38
CrossRef Cites 10
Days from submission to acceptance 54
Days from acceptance to publication 78
Acceptance Rate 84%

CrossRef Documents 46
CrossRef Cites 0
Days from submission to acceptance 33
Days from acceptance to publication 85
Acceptance Rate 93%

CrossRef Documents 13
CrossRef Cites 0
Days from submission to acceptance 30
Days from acceptance to publication 62
Acceptance Rate 93%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
Size A4
Year of
per Year
per Year
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Chief Executive Officer, Akadémiai Kiadó
CC-BY 4.0
CC-BY-NC 4.0
ISSN ISSN 2732-2688

Monthly Content Usage

Abstract Views Full Text Views PDF Downloads
Feb 2024 0 48 3
Mar 2024 0 114 7
Apr 2024 0 143 7
May 2024 0 44 2
Jun 2024 0 31 2
Jul 2024 0 27 7
Aug 2024 0 0 0