View More View Less
  • 1 Természettudományi Kutatóközpont, Enzimológiai Intézet, , Budapest, Magyarország; Research Centre for Natural Sciences, Institute of Enzymology, , Budapest, Hungary
Open access

Összefoglaló. A molekuláris onkológia térnyerésével számos új lehetőség érhető el a daganatos betegek hatékonyabb kezelésére. Ilyen a klinikai vizsgálatokban alkalmazott, a valóban személyre szabott kezelést elősegítő génpanelelemzés, illetve a célzott kezelés szövettípustól független alkalmazása. A személyre szabott terápiák jelentős hányada valamelyik kinázt gátolja. Az összefoglalónkban bemutatjuk a RAS jelátviteli út sejten belüli komplex szabályozását, valamint ismertetjük az útvonal további farmakológiai szempontból kiaknázható célpontjait nemzetközi és saját eredményeink alapján. A kinázokat érintő gyakori mutációk ellenére számos daganattípusban nem áll rendelkezésre személyre szabott terápia. A hagyományos terápiával nem kezelhető agydaganatok példáján keresztül bemutatjuk a tirozin-kinázok várható jövőbeli terápiás jelentőségét.

Summary. With the advent of molecular oncology, the identification of mutations in solid tumours is now clinically routine. The growing repertoire of targeted therapeutic agents has supported the rise of a new type of clinical trial in which the selection of the therapeutic agent is no longer restricted to a single option. Instead, a panel of genes is screened to identify the most suitable drug for each patient. Such trials have delivered objective response rates in 5–30% of patients. Most of the signal transduction pathways targeted by these agents involves RAS signaling.

Somatic mutations in RAS genes are common in human tumours. Such mutations generally decrease the ability of RAS to hydrolyze GTP, maintaining the protein in a constitutively active GTP-bound form that drives uncontrolled cell proliferation. Recent emerging data suggest that RAS regulation is more complex than the scientific community has appreciated for decades. We discuss a novel type of RAS regulation that involves direct phosphorylation and dephosphorylation of RAS tyrosine residues. The discovery that pharmacological inhibition of the tyrosine phosphoprotein phosphatase SHP2 maintains mutant Ras in an inactive state suggests that SHP2 could be a novel drug target for the treatment of Ras-driven human cancers.

In addition to RAS gene mutations, other common oncogenic events have also been identified, including mutation of EGFR (epidermal growth factor receptor) or BRAF (isoform B of rapidly accelerated fibrosarcoma). EGFR has tyrosine kinase activity while BRAF acts as a serine/threonine kinase. In some tumours, mutant forms of these kinases over-activate cell proliferation, leading to uncontrolled tumour cell growth; therefore, it seems rational to develop inhibitor molecules that target these hyper-active oncogenic kinases to reduce tumour cell burden in cancer patients.

Fusion protein kinases activated via the RAS pathway represent target proteins with high clinical success rates. Recently approved TRK fusion protein kinase inhibitors have reached response rates in almost 80% of patients regardless of tumour type. Although these drugs can only be administered to patients whose tumours harbour a TRK fusion protein, such success stories pave the way for future development of agents that target similar genetic mutations.

Glioblastoma multiforme, a relatively frequent, almost uniformly fatal brain tumour, has ubiquitous alterations in tyrosine-kinase signalling. Nevertheless, to this day, no tyrosine-kinase inhibitors have been approved for its treatment. We have ongoing research projects to uncover associations between initial gene expression levels in untreated glioblastoma samples and treatment-related survival, and we have identified overexpression of druggable tyrosine-kinase receptors in chemotherapy-resistant patients. Our approach will help to identify patients who might benefit from concurrent use of tyrosine kinase inhibitors and conventional cytotoxic therapies.

  • 1

    Bourgeois, J. M., Knezevich, S. R., Mathers, J. A., & Sorensen, P. H. B. (2000) Molecular Detection of the ETV6-NTRK3 Gene Fusion Differentiates Congenital Fibrosarcoma From Other Childhood Spindle Cell Tumors. The American Journal of Surgical Pathology, Vol. 24. No. 7. pp. 937–946.

  • 2

    Buday, L., & Downward, J. (1993) Epidermal growth factor regulates p21ras through the formation of a complex of receptor, Grb2 adapter protein, and Sos nucleotide exchange factor. Cell, Vol. 73. No. 3. pp. 611–620.

  • 3

    Buday, L., & Vas, V. (2020) Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev., Vol. 39. No. 4. pp. 1067–1073.

  • 4

    Chinot OL, Wick W, Mason W, Henriksson R, Saran F, Nishikawa R, et al. (2014) Bevacizumab plus Radiotherapy–Temozolomide for Newly Diagnosed Glioblastoma. New England Journal of Medicine. 2014 370(8): pp. 709-22.

  • 5

    Drilon, A., Laetsch, T. W., Kummar, S., DuBois, S.G., Lassen, U. N., Demetri, G. D., … Hyman, D. M. (2018) Efficacy of Larotrectinib in TRK Fusion–Positive Cancers in Adults and Children. New England Journal of Medicine, Vol. 378. No. 8. pp. 731–739.

  • 6

    Flaherty, K. T., Gray, R., Chen, A., Li, S., Patton, D., Hamilton, S. R., … NCI-MATCH Team (2020) The Molecular Analysis for Therapy Choice (NCI-MATCH) Trial: Lessons for Genomic Trial Design. J Natl Cancer Inst. Vol. 112. No. 10. pp. 1021–1029.

  • 7

    Gieszer, B., Megyesfalvi, Z., Dulai, V., Papay, J., Kovalszky, I., Timar, J., … Moldvay, J. (2021) EGFR variant allele frequency predicts EGFR-TKI efficacy in lung adenocarcinoma: a multicenter study. Transl Lung Cancer Res. Vol. 10. No. 2. pp. 662–674.

  • 8

    Hegi, M. E., Diserens, A.-C., Gorlia, T., Hamou, M.-F., de Tribolet, N., Weller, M., … Stupp, R. (2005) MGMT Gene Silencing and Benefit from Temozolomide in Glioblastoma. New England Journal of Medicine, Vol. 352. No. 10. pp. 997–1003.

  • 9

    Chen C, Chen P, Lin Y, Feng L, Chen S, Chen C, et al. Suppression of tumor growth via IGFBP3 depletion as a potential treatment in glioma. Journal of Neurosurgery. 2020 132 (5):pp. 1313-1674.

  • 10

    Laetsch, T. W., DuBois S. G., Mascarenhas, L., Turpin, B., Federman, N., Albert, C. M., … Hawkins, D. S. (2018) Larotrectinib for paediatric solid tumours harbouring NTRK gene fusions: phase 1 results from a multicentre, open-label, phase 1/2 study. The Lancet Oncology, Vol. 19. No. 5. pp. 705–714.

  • 11

    Le Rhun, E., Preusser, M., Roth, P., Reardon, D. A., van den Bent, M., Wen, P., … Weller, M. (2019) Molecular targeted therapy of glioblastoma. Cancer Treatment Reviews, 80:101896.

  • 12

    Martin-Zanca, D., Hughes, S. H., & Barbacid, M. (1986) A human oncogene formed by the fusion of truncated tropomyosin and protein tyrosine kinase sequences. Nature, Vol. 319. No. 6056. pp. 743–748.

  • 13

    Meisel, A., & Hochmair, M. (2020) Critical Review of EGFR-Mutated NSCLC: What We Do and Do Not Know. healthbook TIMES Onco Hema. Vol. 18. No. 3. pp. 20–35.

  • 14

    Menyhárt, O., Tibor Fekete, J., & Győrffy, B. (2021) Gene expression-based biomarkers designating glioblastomas resistant to multiple treatment strategies. Carcinogenesis, Vol. 42, Issue 6, 2021, pp. 804–813.

  • 15

    Moore, A. R., Rosenberg, S. C., McCormick, F., & Malek, S. (2020) RAS-targeted therapies: is the undruggable drugged? Nature Reviews Drug Discovery, Vol. 19. No. 8. pp. 533–552.

  • 16

    Ozawa, T., Riester, M., Cheng, Y.-K., Huse, J. T., Squatrito, M., Helmy, K., … Holland, E. C. (2014) Most Human Non-GCIMP Glioblastoma Subtypes Evolve from a Common Proneural-like Precursor Glioma. Cancer Cell, Vol. 26. No. 2. pp. 288–300.

  • 17

    Parsons, D. W., Janeway, K. A., Patton, D., Coffey, B., Williams, P. M., Hamilton, S. R., … Seibel, N. (2019) Identification of targetable molecular alterations in the NCI-COG Pediatric MATCH trial. JCO. Vol. 37. No. 15. suppl. 10011.

  • 18

    Parsons, D. W., Jones, S., Zhang, X., Lin, J. C.-H., Leary, R. J., Angenendt, P., … Kinzler, K. W. (2014) An Integrated Genomic Analysis of Human Glioblastoma Multiforme. Science, Vol. 321. No. 5897. pp. 1807–1812.

  • 19

    Reifenberger, G., Wirsching, H.-G., Knobbe-Thomsen, C. B., & Weller, M. (2017) Advances in the molecular genetics of gliomas – implications for classification and therapy. Nature Reviews Clinical Oncology, Vol. 14. No. 7. pp. 434–452.

  • 20

    Ros, J., Baraibar, I., Sardo, E., Mulet, N., Salvà, F., Argilés, G., … Élez. E. (2021) BRAF, MEK and EGFR inhibition as treatment strategies in BRAF V600E metastatic colorectal cancer. Ther Adv Med Oncol., 13: 1758835921992974.

  • 21

    Rubin, B. P., Chen, C.-J., Morgan, T. W., Xiao, S., Grier, H. E., Kozakewich, H. P., … Fletcher, J. A. (1998) Congenital Mesoblastic Nephroma t(12;15) Is Associated withETV6-NTRK3 Gene Fusion: Cytogenetic and Molecular Relationship to Congenital (Infantile) Fibrosarcoma. The American Journal of Pathology, Vol. 153. No. 5- pp. 1451–1458.

  • 22

    Siegelin, M. D., & Borczuk, A. C. (2014) Epidermal growth factor receptor mutations in lung adenocarcinoma. Laboratory Investigation, Vol. 94. No. 2. pp. 129–137.

  • 23

    Stefano, A. L. D., Fucci, A., Frattini, V., Labussiere, M., Mokhtari, K., Zoppoli, P., … Iavarone, A. (2015) Detection, Characterization, and Inhibition of FGFR–TACC Fusions in IDH Wild-type Glioma. Clin Cancer Res., Vol. 21. No. 14. pp. 3307–3317.

  • 24

    Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A., & Kinzler, K. W. (2013) Cancer Genome Landscapes. Science, Vol. 339. No. 6127. pp. 1546–1558.

  • 25

    Wu, G., Diaz, A. K., Paugh, B. S., Rankin, S. L., Ju, B., Li, Y., … Baker, S. L. (2014) The genomic landscape of diffuse intrinsic pontine glioma and pediatric non-brainstem high-grade glioma. Nature Genetics, Vol. 46. No. 5. pp. 444–450.

  • 26

    Yan, H., Parsons, D. W., Jin, G., McLendon, R., Rasheed, B.A., Yuan, W., … Bigner, D. D. (2009) IDH1 and IDH2 Mutations in Gliomas. New England Journal of Medicine, Vol. 360. No. 8. pp. 765–773.

The author instructions are available in separate PDFs.
Please, download the Hungarian version from HERE, the English version from HERE.
The Submissions templates are available in MS Word.
For articles in Hungarian, please download it from HERE and for articles in English from HERE.
 

Ministry of Interior
Science Strategy and Coordination Department
Address: H-2090 Remeteszőlős, Nagykovácsi út 3.
Phone: (+36 26) 795 906
E-mail: scietsec@bm.gov.hu

2020  
CrossRef Documents 13
CrossRef Cites 0
CrossRef H-index 0
Days from submission to acceptance 247
Days from acceptance to publication 229
Acceptance Rate 36%

Publication Model Gold Open Access
Submission Fee none
Article Processing Charge none

Scientia et Securitas
Language Hungarian
English
Size A4
Year of
Foundation
2020
Publication
Programme
2020 Volume 1
Volumes
per Year
1
Issues
per Year
4
Founder Academic Council of Home Affairs and
Association of Hungarian PhD and DLA Candidates
Founder's
Address
H-2090 Remeteszőlős, Hungary, Nagykovácsi út 3.
H-1055 Budapest, Hungary Falk Miksa utca 1.
Publisher Akadémiai Kiadó
Publisher's
Address
H-1117 Budapest, Hungary 1516 Budapest, PO Box 245.
Responsible
Publisher
Chief Executive Officer, Akadémiai Kiadó
ISSN ISSN 2732-2688

Editor-in-Chief:

  • Tamás NÉMETH 
    (Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research
    Budapest, Hungary)

Managing Editor:

  • István SABJANICS (Ministry of Interior, Budapest, Hungary)

Editorial Board:

  • Melinda KOVÁCS (Szent István University Kaposvár Campus)Á
  • Miklós MARÓTH (Eötvös Loránd Research Network)
  • Charaf HASSAN (Budapest University of Technology and Economics)
  • Zoltán GYŐRI (Hungaricum Committee)
  • József HALLER (University of Public Service)
  • Attila ASZÓDI (Budapest University of Technology and Economics)
  • Zoltán BIRKNER (National Research, Development and Innovation Office)
  • Tamás DEZSŐ (Migration Research Institute)
  • Imre DOBÁK (University of Public Service)
  • András KOLTAY (University of Public Service)
  • Gábor KOVÁCS (University of Public Service)
  • József PALLO (University of Public Service)
  • Marcell Gyula GÁSPÁR (University of Miskolc)
  • Judit MÓGOR (Ministry of Interior National Directorate General for Disaster Management)
  • István SABJANICS (Ministry of Interior)
  • Péter SZABÓ (Hungarian University of Agriculture and Life Sciences (MATE))
  • Miklós SZÓCSKA (Semmelweis University)
  • János JÓZSA (Budapest University of Technology and Economics)
  • Valéria CSÉPE (Research Centre for Natural Sciences, Brain Imaging Centre)